A subset X of a lattice L with 0 is called CDW-independent if (1) it is CDindependent, i.e., for any x, y ∈ X , either x ≤ y or y ≤ x or x ∧ y = 0 and (2) it is weakly independent, i.e., for any n ∈ N and x, y1, . . . , yn ∈ X the inequalityx ≤ y1∨· · ·∨yn implies x ≤ yi for some i. A maximal CDW-independent subset is called a CDW-basis. With combinatorial examples and motivations in the backgr...