نتایج جستجو برای: signed k dominating function
تعداد نتایج: 1558751 فیلتر نتایج به سال:
A k-dominating set is a set D k V such that every vertex i 2 V nD k has at least k i neighbours in D k. The k-domination number k (G) of G is the cardinality of a smallest k-dominating set of G. For k 1 = ::: = k n = 1, k-domination corresponds to the usual concept of domination. Our approach yields an improvement of an upper bound for the domination number found then the conception of k-domina...
Efficient routing among mobile hosts is an important function in ad hoc networks. Routing based on a connected dominating set is a promising approach, where the search space for a route is reduced to the hosts in the set. A set is dominating if all the hosts are either in the set or neighbors of hosts in the set. The efficiency of dominating-set-based routing mainly depends on the overhead intr...
In standard kernelization algorithms, the usual goal is to reduce, in polynomial time, an instance (I, k) of a parameterized problem to an equivalent instance (I ′, k′) of size bounded by a function in k. One of the central problems in this area, whose investigation has led to the development of many kernelization techniques, is the Dominating Set problem. Given a graph G and k ∈ N, Dominating ...
Given a graph G together with a capacity function c : V (G) → N, we call S ⊆ V (G) a capacitated dominating set if there exists a mapping f : (V (G) \ S) → S which maps every vertex in (V (G) \S) to one of its neighbors such that the total number of vertices mapped by f to any vertex v ∈ S does not exceed c(v). In the Planar Capacitated Dominating Set problem we are given a planar graph G, a ca...
For a positive integer k, a total {k}-dominating function of a digraph D is a function f from the vertex set V (D) to the set {0, 1, 2, . . . , k} such that for any vertex v ∈ V (D), the condition ∑ u∈N(v) f(u) ≥ k is fulfilled, where N(v) consists of all vertices of D from which arcs go into v. A set {f1, f2, . . . , fd} of total {k}-dominating functions of D with the property that ∑ d i=1 fi(...
Let k~l be an integer, and let G = (V, E) be a graph. The closed kneighborhood N k[V] of a vertex v E V is the set of vertices within distance k from v. A 3-valued function f defined on V of the form f : V --+ { -1,0, I} is a three-valued k-neighborhood dominating function if the sum of its function values over any closed k-neighborhood is at least 1. The weight of a threevalued k-neighborhood ...
Let k ≥ j ≥ 1 be two integers, and letG be a simple graph such that j(δ(G)+1) ≥ k, where δ(G) is the minimum degree of G. A (j, k)-dominating function of a graph G is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , j} such that for any vertex v ∈ V (G), the condition ∑ u∈N[v] f(u) ≥ k is fulfilled, where N [v] is the closed neighborhood of v. A set {f1, f2, . . . , fd} of (j...
The in-neighborhood, I(v), of a vertex v in a digraph D=(V, A) is v together with the set of all vertices sending an arc to v, i.e., vertices u such that (u, v) # A. A subset of V is called dominating if it meets I(v) for every v # V. (To avoid confusion, it must be noted that some authors require in the definition meeting every out-neighborhood.) A set of vertices is called independent if no t...
a roman dominating function (rdf) on a graph g = (v,e) is defined to be a function satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. a set s v is a restrained dominating set if every vertex not in s is adjacent to a vertex in s and to a vertex in . we define a restrained roman dominating function on a graph g = (v,e) to be ...
Let be a simple graph with vertex set and edge set . Let have at least vertices of degree at least , where and b are positive integers. A function is said to be a signed -edge cover of G if G ( ) V G ( ) e E v ( ) E G G : ( f E k b k ) { 1,1} G ( , ) b k ( ) f e b for at least vertices of , where . The value k v G ( ) = {uv E( ( ) E v G u N v ) | } ( ) min ( ) G e E f e , taki...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید