نتایج جستجو برای: signed total roman k domination number

تعداد نتایج: 2157122  

‎For any integer $kgeq 1$‎, ‎a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-‎tuple total dominating set of $G$ if any vertex‎ ‎of $G$ is adjacent to at least $k$ vertices in $S$‎, ‎and any vertex‎ ‎of $V-S$ is adjacent to at least $k$ vertices in $V-S$‎. ‎The minimum number of vertices of such a set‎ ‎in $G$ we call the $k$-tuple total restrained domination number of $G$‎. ‎The maximum num...

2015
Chuan-Min Lee Cheng-Chien Lo Rui-Xin Ye Xun Xu Xiao-Han Shi Jia-Ying Li

This paper is motivated by the concept of the signed k-domination problem and dedicated to the complexity of the problem on graphs. For any fixed nonnegative integer k, we show that the signed k-domination problem is NP-complete for doubly chordal graphs. For strongly chordal graphs and distance-hereditary graphs, we show that the signed k-domination problem can be solved in polynomial time. We...

Journal: :bulletin of the iranian mathematical society 0
h. hosseinzadeh department of mathematics‎, ‎alzahra university‎, ‎p.o. box 19834, tehran‎, ‎iran. n. soltankhah department of mathematics‎, ‎alzahra university‎, ‎p.o. box 19834, tehran‎, ‎iran.

‎let $g=(v(g),e(g))$ be a graph‎, ‎$gamma_t(g)$. let $ooir(g)$ be the total domination and oo-irredundance number of $g$‎, ‎respectively‎. ‎a total dominating set $s$ of $g$ is called a $textit{total perfect code}$ if every vertex in $v(g)$ is adjacent to exactly one vertex of $s$‎. ‎in this paper‎, ‎we show that if $g$ has a total perfect code‎, ‎then $gamma_t(g)=ooir(g)$‎. ‎as a consequence, ...

Journal: :Australasian J. Combinatorics 2017
Alawi Alhashim Wyatt J. Desormeaux Teresa W. Haynes

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

Journal: :Discrete Math., Alg. and Appl. 2013
A. Bahremandpour Fu-Tao Hu Seyed Mahmoud Sheikholeslami Jun-Ming Xu

A Roman dominating function on a graph G = (V,E) is a function f : V → {0, 1, 2} such that every vertex v ∈ V with f(v) = 0 has at least one neighbor u ∈ V with f(u) = 2. The weight of a Roman dominating function is the value f(V (G)) = ∑ u∈V (G) f(u). The minimum weight of a Roman dominating function on a graph G is called the Roman domination number, denoted by γR(G). The Roman bondage number...

Journal: :transactions on combinatorics 2015
adel p. kazemi

given a graph $g$, the total dominator coloring problem seeks aproper coloring of $g$ with the additional property that everyvertex in the graph is adjacent to all vertices of a color class. weseek to minimize the number of color classes. we initiate to studythis problem on several classes of graphs, as well as findinggeneral bounds and characterizations. we also compare the totaldominator chro...

Journal: :Applicable Analysis and Discrete Mathematics 2016

Journal: :Discussiones Mathematicae Graph Theory 2015

Journal: :Australasian J. Combinatorics 2012
Nader Jafari Rad Chun-Hung Liu

A Roman dominating function (RDF) on a graph G = (V,E) is a function f : V → {0, 1, 2} satisfying the condition that every vertex u for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF f is the value f(V (G)) = ∑ u∈V (G) f(u). A function f : V (G) → {0, 1, 2} with the ordered partition (V0, V1, V2) of V (G), where Vi = {v ∈ V (G) | f(v) = i} for i = 0...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید