نتایج جستجو برای: skew symmetric matrix
تعداد نتایج: 444735 فیلتر نتایج به سال:
let $d$ be a digraph with skew-adjacency matrix $s(d)$. the skew energy of $d$ is defined as the sum of the norms of all eigenvalues of $s(d)$. two digraphs are said to be skew equienergetic if their skew energies are equal. we establish an expression for the characteristic polynomial of the skew adjacency matrix of the join of two digraphs, and for the respective skew energ...
Suppose that the matrix equation AXB = C with unknown matrix X is given, where A, B, and C are known matrices of suitable sizes. The matrix nearness problem is considered over the general and least squares solutions of the matrix equation AXB = C when the equation is consistent and inconsistent, respectively. The implicit form of the best approximate solutions of the problems over the set of sy...
We discuss a generalization of the Cohn–Umans method, a potent technique developed for studying the bilinear complexity of matrix multiplication by embedding matrices into an appropriate group algebra. We investigate how the Cohn–Umans method may be used for bilinear operations other than matrix multiplication, with algebras other than group algebras, and we relate it to Strassen’s tensor rank ...
the matrix functions appear in several applications in engineering and sciences. the computation of these functions almost involved complicated theory. thus, improving the concept theoretically seems unavoidable to obtain some new relations and algorithms for evaluating these functions. the aim of this paper is proposing some new reciprocal for the function of block anti diagonal matrices. more...
The classical singular value decomposition for a matrix A ∈ Cm×n is a canonical form for A that also displays the eigenvalues of the Hermitian matrices AA∗ and A∗A. In this paper, we develop a corresponding decomposition for A that provides the Jordan canonical forms for the complex symmetric matrices AA and AA. More generally, we consider the matrix triple (A,G, Ĝ), where G ∈ Cm×m, Ĝ ∈ Cn×n ar...
We prove universality of local eigenvalue statistics in the bulk of the spectrum for orthogonal invariant matrix models with real analytic potentials with one interval limiting spectrum. Our starting point is the Tracy-Widom formula for the matrix reproducing kernel. The key idea of the proof is to represent the differentiation operator matrix written in the basis of orthogonal polynomials as a...
We prove universality of local eigenvalue statistics in the bulk of the spectrum for orthogonal invariant matrix models with real analytic potentials with one interval limiting spectrum. Our starting point is the Tracy-Widom formula for the matrix reproducing kernel. The key idea of the proof is to represent the differentiation operator matrix written in the basis of orthogonal polynomials as a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید