نتایج جستجو برای: span
تعداد نتایج: 44529 فیلتر نتایج به سال:
experimental work was carried out to investigate the influence of impeller speed, granulation time, binder mass and their interactions on granule size distribution, mean size and binder content distribution in a conical high shear granulator. it was observed that the response of high shear granulation to changes in process parameters varies significantly from one operating condition to another....
در این پایان نامه، کلاس جدیدی از کدهای ldpcبه نام کد گراف اصلی معرفی می شود و یک گراف اصلی به عنوان طرحی برای ساختن کدهای ldpc با اندازه دلخواه به کار می رود، سپس با معرفی کدهای کانولوشن ldpc، مدل هایی از کدهای ldpc و کدهای کانولوشن ldpc که می توانند با بسط یک گراف اصلی به دست آیند، ارائه می شوند. در ادامه الگوریتم های کدگشایی از جمله الگوریتم نشر اطمینان برای کدگشایی کدهای م...
Prompted by manager concerns about span of control, a large, integrated health system set out to determine if span of control really mattered. Was there something to it, or was it just an excuse for poor performance? A team of middle managers studied the problem and ultimately demonstrated a strong relationship between span of control and employee engagement. Consequently, it was decided to add...
A click on an item is arguably the most widely used feature in recommender systems. However, a click is one out of 174 events a browser can trigger. This paper presents a framework to effectively collect and store data from event streams. A set of mining methods is provided to extract user engagement features such as: attention span, scrolling depth and visible impressions. In this work, we pre...
We introduce a linear algebraic model of computation, the Span Program, and prove several upper and lower bounds on it. These results yield the following applications in complexity and cryptography: • SL ⊆ ⊕L (a weak Logspace analogue of NP ⊆ ⊕P). • The first super-linear size lower bounds on branching programs that count. • A broader class of functions which posses information-theoretic secret...
We discuss a simple sparse linear problem that is hard to learn with any algorithm that uses a linear combination of the training instances as its weight vector. The hardness holds even if we allow the learner to embed the instances into any higher dimensional feature space (and use a kernel function to define the dot product between the embedded instances). These algorithms are inherently limi...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید