نتایج جستجو برای: stock trend forecasting
تعداد نتایج: 249462 فیلتر نتایج به سال:
Since the establishment of the Shanghai Stock Exchange (SHSE) in 1990 and the Shenzhen Stock Exchange (SZSE) in 1991, China’s stock markets have expanded rapidly. Although this rapid growth has attracted considerable academic interest, few studies have examined the ability of conventional financial models to predict the share price movements of Chinese stock. This gap in the literature is signi...
Stock price forecasting has been mostly realized using quantitative information. However, recent studies have demonstrated that sentiment information hidden in corporate annual reports can be successfully used to predict short-run stock price returns. Soft computing methods, like neural networks and support vector regression, have shown promising results in the forecasting of stock price due to...
There is an old Wall Street adage goes, ‘‘It takes volume to make price move”. The contemporaneous relation between trading volume and stock returns has been studied since stock markets were first opened. Recent researchers such as Wang and Chin [Wang, C. Y., & Chin S. T. (2004). Profitability of return and volume-based investment strategies in China’s stock market. Pacific-Basin Finace Journal...
This paper presents an integration prediction method which is called a hybrid forecasting system based on multiple scales. In this method, the original data are decomposed into multiple layers by the wavelet transform and the multiple layers are divided into low-frequency, intermediate-frequency and high-frequency signal layers. Then autoregressive moving average models, Kalman filters and Back...
Fast forecasting of stock market prices is very important for strategic planning. In this paper, a new approach for fast forecasting of stock market prices is presented. Such algorithm uses new high speed time delay neural networks (HSTDNNs). The operation of these networks relies on performing cross correlation in the frequency domain between the input data and the input weights of neural netw...
Fundamental economic conditions are crucial determinants of equity premia. However, commonly used predictors do not adequately capture the changing nature of economic conditions and hence have limited power in forecasting equity returns. To address the inadequacy, this paper constructs macro indices from large datasets and adaptively chooses optimal indices to predict stock returns. I find that...
The experts considered in this paper are neural networks whose forecasts are combined by another neural network, a gate. For regression problems such an architecture was shown to partly remedy the two main problems in forecasting real world time series: nonstationarity and overfitting. The goal of this paper is to compare the forecasting ability of gated experts (GE) with a that of a single neu...
Abstract In this paper we propose a modification to the standard forecasting, periodic order-up-tolevel inventory control approach to dealing with intermittent demand items, when the lead-time length is shorter than the average inter-demand interval. In particular, we develop an approach that relies upon the employment of separate estimates of the interdemand intervals and demand sizes, when de...
Classification and patterns extraction from customer data is very important for business support and decision making. Timely identification of newly emerging trends is needed in business process. Sales patterns from inventory data indicate market trends and can be used in forecasting which has great potential for decision making, strategic planning and market competition. The objectives in this...
STOCK market price behavior has been studied extensively. It is influenced by a myriad of factors, including political and economic events, among others, and is a complex nonlinear time-series problem. Traditionally, stock price forecasting is performed based on technical analysis, which focuses on price action, which is the process of finding patterns in price history. More recently, research ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید