We prove that non-trivial homoclinic classes of C r-generic flows are topo-logically mixing. This implies that given Λ a non-trivial C 1-robustly transitive set of a vector field X, there is a C 1-perturbation Y of X such that the continuation Λ Y of Λ is a topologically mixing set for Y. In particular, robustly transitive flows become topologically mixing after C 1-perturbations. These results...