Let (T,r,p) be a finite measure space, X be a Banach space, P be a metric space and let L,(y,X) denote the space of equivalence classes of X-valued Bochner integrable functions on (T, T, p). We show that if $I: T x P-2x is a set-valued function such that for each fixed p E P, 4(. , p) has a measurable graph and for each fixed TV T, 4(t;) is either upper or lower semicontinuous then the Aumann i...