نتایج جستجو برای: vertex edge wiener index
تعداد نتایج: 541039 فیلتر نتایج به سال:
for a graph $g$ with edge set $e(g)$, the multiplicative sum zagreb index of $g$ is defined as$pi^*(g)=pi_{uvin e(g)}[d_g(u)+d_g(v)]$, where $d_g(v)$ is the degree of vertex $v$ in $g$.in this paper, we first introduce some graph transformations that decreasethis index. in application, we identify the fourteen class of trees, with the first through fourteenth smallest multiplicative sum zagreb ...
We prove a conjecture of Nadjafi-Arani et al. on the difference between the Szeged and the Wiener index of a graph (M. J. Nadjafi-Arani, H. Khodashenas, A. R. Ashrafi: Graphs whose Szeged and Wiener numbers differ by 4 and 5, Math. Comput. Modelling 55 (2012), 1644–1648). Namely, if G is a 2-connected non-complete graph on n vertices, then Sz (G) −W (G) ≥ 2n − 6. Furthermore, the equality is ob...
Quantitative structure-property relationship (QSPR) and quantitative structure-activity relationship (QSAR) studies use statistical models to compute physical, chemical, or biological properties of a chemical substance from its molecular structure, encoded in a numerical form with the aid of various descriptors. Structural indices derived from molecular graph matrices represent an important gro...
the gutman index and degree distance of a connected graph $g$ are defined as begin{eqnarray*} textrm{gut}(g)=sum_{{u,v}subseteq v(g)}d(u)d(v)d_g(u,v), end{eqnarray*} and begin{eqnarray*} dd(g)=sum_{{u,v}subseteq v(g)}(d(u)+d(v))d_g(u,v), end{eqnarray*} respectively, where $d(u)$ is the degree of vertex $u$ and $d_g(u,v)$ is the distance between vertices $u$ and $v$. in th...
the edge tenacity te(g) of a graph g is dened as:te(g) = min {[|x|+τ(g-x)]/[ω(g-x)-1]|x ⊆ e(g) and ω(g-x) > 1} where the minimum is taken over every edge-cutset x that separates g into ω(g - x) components, and by τ(g - x) we denote the order of a largest component of g. the objective of this paper is to determine this quantity for split graphs. let g = (z; i; e) be a noncomplete connected spli...
let $g$ be a connected graph of order $3$ or more and $c:e(g)rightarrowmathbb{z}_k$ ($kge 2$) a $k$-edge coloring of $g$ where adjacent edges may be colored the same. the color sum $s(v)$ of a vertex $v$ of $g$ is the sum in $mathbb{z}_k$ of the colors of the edges incident with $v.$ the $k$-edge coloring $c$ is a modular $k$-edge coloring of $g$ if $s(u)ne s(v)$ in $mathbb{z}_k$ for all pa...
The Wiener index W (G) of a connected graph G is defined to be the sum
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید