نتایج جستجو برای: zariski topology
تعداد نتایج: 68387 فیلتر نتایج به سال:
Let G be a reductive algebraic group over an algebraically closed field k. An algebraic characteristic class of degree i for principal G-bundles on schemes is a function c assigning to each principal G-bundle E → X an element c(E) in the Chow group AX, natural with respect to pullbacks. These classes are analogous to topological characteristic classes (which take values in cohomology), and two ...
3 Topics in Commutative Algebra 2 3.1 Rings and Fields . . . . . . . . . . . . . . . . . . . . . . . . . 2 3.2 Ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.3 Quotient Rings and Homomorphisms . . . . . . . . . . . . . . 5 3.4 The Characteristic of a Ring . . . . . . . . . . . . . . . . . . . 7 3.5 Polynomial Rings in Several Variables . . . . . . . . . . . . . . 7 3.6...
The main result of this article is a refinement of the well-known subgroup separability results of Hall and Scott for free and surface groups. We show that for any finitely generated subgroup, there is a finite dimensional representation of the free or surface group that separates the subgroup in the induced Zariski topology. As a corollary, we establish a polynomial upper bound on the size of ...
We characterize those finitely generated commutative rings which are (parametrically) bi-interpretable with arithmetic: a finitely generated commutative ring A is bi-interpretable with (N,+,×) if and only if the space of non-maximal prime ideals of A is nonempty and connected in the Zariski topology and the nilradical of A has a nontrivial annihilator in Z. Notably, by constructing a nontrivial...
In general, the sheaf criterion on the étale topology may be difficult to verify directly, as a scheme will in general have many étale covers. It is clear that a necessary condition for a presheaf F to be a sheaf on Xet is that it be a sheaf with respect to Zariski covers (i.e., its restriction to Xzar is a sheaf), and that it be a sheaf with respect to one-piece étale covers (V → U) such that ...
A series of Zariski pairs and four Zariski triplets were found by using lattice theory of K3 surfaces. There is a Zariski triplet of which one member is a deformation of another.
In [2], Billera proved that the R-algebra of continuous piecewise polynomial functions (C0 splines) on a d-dimensional simplicial complex 1 embedded in Rd is a quotient of the Stanley–Reisner ring A1 of 1. We derive a criterion to determine which elements of the Stanley–Reisner ring correspond to splines of higher-order smoothness. In [5], Lau and Stiller point out that the dimension of C k (1)...
then V is a primitive Fano variety of dimensionM , that is, Pic V = ZKV and (−KV ) is ample. The purpose of this note is to sketch a proof of the following Theorem 1. A general (in the sense of Zariski topology) variety V is birationally superrigid. In particular, V admits no non-trivial structures of a rationally connected fibration, any birational map V 99K V ♯ onto a Fano variety with Q-fact...
variety). For each i, let φi(x) be a C-dense quantifier-free Li-formula with parameters from K. Then we can find a K-definable rational function f : C → P which is non-constant, and has the property that the divisor f−1(0) is a sum of distinct points in ⋂n i=1 φi(K), with no multipliticities. (In particular, the support of the divisor contains no points from C(K)\C(K) and no points from C \ C.)...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید