نتایج جستجو برای: $p$-biharmonic equation
تعداد نتایج: 1478595 فیلتر نتایج به سال:
In this paper, we study the existence of multiple solutions to a class of p-biharmonic elliptic equations, pu – pu + V(x)|u|p–2u = λh1(x)|u|m–2u + h2(x)|u|q–2u, x ∈RN , where 1 0. By variational methods, we obtain the existence of infini...
The aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. The approach is based on variational methods.
We study biharmonic hypersurfaces in a generic Riemannian manifold. We first derive an invariant equation for such hypersurfaces generalizing the biharmonic hypersurface equation in space forms studied in [16], [8], [6], [7]. We then apply the equation to show that the generalized Chen’s conjecture is true for totally umbilical biharmonic hypersurfaces in an Einstein space, and construct a (2-p...
Motion of a biharmonic system under action of small periodic force and small damped force is studied. The biharmonic oscillator is a physical system acting under a biharmonic force like: θ θ 2 sin sin b a + . The article contains biharmonic oscillator analysis, phase space research, and analytic solutions for separatrixes. The biharmonic oscillator performs chaotic motion near separatrixes unde...
This paper deals with the existence of solutions a p-biharmonic pseudo parabolic partial differential equation logarithmic nonlinearity in bounded domain. We prove global weak using Faedo-Galerkin method and applying concavity approach, that blow up at finite time. Further, we provide maximal limit for blow-up
the aim of this article is to establish the existence of at least three solutions for a perturbed $p$-biharmonic equation depending on two real parameters. the approach is based on variational methods.
The evaluation of sums (matrix-vector products) of the solutions of the three-dimensional biharmonic equation can be accelerated using the fast multipole method, while memory requirements can also be significantly reduced. We develop a complete translation theory for these equations. It is shown that translations of elementary solutions of the biharmonic equation can be achieved by considering ...
using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{r}^n$. the existence of nontrivial solution is established under a new set of hypotheses on the potential $v(x)$ and the weight functions $h_1(x), h_2(x)$.
Abstract. Using Maz’ya type integral identities with power weights, we obtain new boundary estimates for biharmonic functions on Lipschitz and convex domains in R. For n ≥ 8, combined with a result in [S2], these estimates lead to the solvability of the L Dirichlet problem for the biharmonic equation on Lipschitz domains for a new range of p. In the case of convex domains, the estimates allow u...
The behavior of solutions to the biharmonic equation is well-understood in smooth domains. In the past two decades substantial progress has also been made for the polyhedral domains and domains with Lipschitz boundaries. However, very little is known about higher order elliptic equations in the general setting. In this paper we introduce new integral identities that allow to investigate the sol...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید