نتایج جستجو برای: ابر خمینه
تعداد نتایج: 1983 فیلتر نتایج به سال:
با ذکر پیشنیازهای لازم در فصل اول این رساله، در فصل دوم، ما bl - ابردوجبرcl را ساخته ایم که دوال آن یکریخت با ابر- جبر سریهای توانی از r متغیر با ضرایب در f است . سپس مقاطع ابر- پیش تحلیلی را روی ابر- خمینه مختلط تعریف نموده و فرم کانونی آن و دو گروه کوهمولوژی از بافه آن را محاسبه نموده ایم. در چهارمین فصل، ما ابر- هم مشتق روی روی -a ابرهم جبر را مورد بررسی قرار داده و ابر- هم مشتق های cl را مح...
در این پایان نامه خمینه های کنموتسوی ?-ریچی متقارن را مطالعه می کنیم. هر خمینه کنموتسوی ?-متقارن، ?-ریچی متقارن است. نشان می دهیم یک خمینه کنموتسو ?-ریچی متقارن است اگر وتنها اگر انیشتینی باشد. در نهایت نشان می دهیم cr-ابر رویه های ?-متقارن فضا فرم کنموتسو دارای عملگر شکل d-موازی هستند. همچنین نشان می دهیم عملگر شکل cr-ابر رویه های فضا فرم کنموتسو با شرط c ? -1 d-موازی نیستند. بنابراین cr-ابر ر...
اگر (?:m?r^(n+p یک نشاننده از خمینه ی فشرده و n بعدی m به فضای اقلیدسی (n+p ) بعدی باشد ، m را می توان زیر خمینه ی r^(n+p) محسوب کرد. در بین این زیر خمینه ها ، تعدادی روی ابر کره ی (n+p-1) بعدی واقع می شوند که به طور طبیعی نتایج موجود برای زیر خمینه های کروی برای آن ها صادق است. بنابراین یک مسئله جالب توجه در هندسه ، به دست آوردن شرایطی است که تحت آن این کلاس یعنی زیرخمینه های کروی مشخص شوند. د...
در این پایان نامه به مطالعه خمینه های ریمانی ازنقص همگنی یک می پردازیم. (منظور از یک خمینه ریمانی از نقص همگنی یک، خمینه ریمانی است که تحت عمل یک گروه لی -g که g معمولا یک زیر گروه بسته ازگروه ایزومتری های -m است، دارای یک مدار ابر رویه باشد.) و چند شرط کافی بریا تمام ژئودزیک بودن یک مدار تکین ارائه می دهیم. در پایان به عنوان کاربرد، مساله رده بندی خمینه هایی که خمیدگی مثبت دارند و ...
در این پایان نامه ابر رویه حقیقی هاف خمینه گراسمن مختلط (g2(cm+2 مطالعه می شوند. نشان می دهیم ابر رویه های حقیقی هاف (g2(cm+2 با شرط عملگر ژاکوپی ساختاری جابه جایی یعنی r?i = ?ir به ازای i=1,2,3 وجود ندارند.
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
در این پایان نامه به مطالعه ابر رویه های فضا فرم های ساساکی پرداخته و این ابر رویه ها را در شرایطی چون خمیدگی ثابت هولومرفیک ضعیف، عملگر شکلی برگشتی، d-برگشتی، موضعا متقارن بودن و همچنین با عملگر ژاکوبی تعویض پذیر روی میدان برداری مشخصه را مورد مطالعه و بررسی قرار می دهیم. بعلاوه ابررویه هایی با شرط خمیدگی هولومرفیک ضعیف ثابت را در فضای مختلط تصویری بررسی می کنیم. همچنین ابررویه های فضای کنمو...
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
ساختن یک دوری که نسبت به رده ای از نگاشتها ناوردا باشد، یکی از ابزارهای اساسی در رهیافت هندسی به ریاضیات است. ایدۀ آن به کلاین و حتی ریمان برمی گردد. در این مقاله دوریهایی را در نظر خواهیم گرفت که نسبت به نگاشتهای دوسو تمامریخت خمینه های مختلط، ناوردا باشند. دوریهای متعددی با این ویژگی وجود دارند. تعدادی از آنها از توابع روی فضای مماس ناشی می شوند به همان شیوه ای که متریک ریمانی روی یک خمینه، ی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید