نتایج جستجو برای: ‎gamma-starlike function‎

تعداد نتایج: 1319880  

Journal: :sahand communications in mathematical analysis 2016
samira rahrovi

let $f$ be a locally univalent function on the unit disk $u$. we consider the normalized extensions of $f$ to the euclidean unit ball $b^nsubseteqmathbb{c}^n$ given by$$phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$ where $gammain[0,1/2]$, $z=(z_1,hat{z})in b^n$ and$$psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$in which $betain[0,1]$, $f(z_1)neq 0$ and $...

Let $f$ be a locally univalent function on the unit disk $U$. We consider the normalized extensions of $f$ to the Euclidean unit ball $B^nsubseteqmathbb{C}^n$ given by $$Phi_{n,gamma}(f)(z)=left(f(z_1),(f'(z_1))^gammahat{z}right),$$  where $gammain[0,1/2]$, $z=(z_1,hat{z})in B^n$ and $$Psi_{n,beta}(f)(z)=left(f(z_1),(frac{f(z_1)}{z_1})^betahat{z}right),$$ in which $betain[0,1]$, $f(z_1)neq 0$ a...

Journal: :bulletin of the iranian mathematical society 0
d‎. ‎ vamshee krishna department of mathematics‎, ‎git‎, ‎gitam university‎, ‎visakh-apatnam-530 045‎, ‎andhra pradesh‎, ‎india t. ‎ramreddy department of mathematics, kakatiya university‎, warangal- 506009, telangana state, ‎india.

‎the objective of this paper is to obtain an upper bound to the second hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of gamma-starlike functions‎, ‎using toeplitz determinants‎. ‎the result presented here include‎ ‎two known results as their special cases‎.

‎The objective of this paper is to obtain an upper bound to the second Hankel determinant $|a_{2}a_{4}-a_{3}^{2}|$‎ ‎for the function $f$‎, ‎belonging to the class of Gamma-starlike functions‎, ‎using Toeplitz determinants‎. ‎The result presented here include‎ ‎two known results as their special cases‎.  

2015
RABHA EL-ASHWAH ALAA HASSAN

In this paper, we introduce some new subclasses of analytic functions related to starlike, convex, close-to-convex and quasi-convex functions defined by using a generalized operator and the differential subordination principle. Inclusion relationships for these subclasses are established. Moreover, we introduce some integral-preserving properties. Key-Words: Starlike function; Convex function; ...

2013
See Keong Lee V Ravichandran Shamani Supramaniam Hari M Srivastava

*Correspondence: [email protected] 1School of Mathematical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Full list of author information is available at the end of the article Abstract The estimates for the second Hankel determinant a2a4 – a3 of the analytic function f (z) = z + a2z + a3z + · · · , for which either zf ′(z)/f (z) or 1 + zf ′′(z)/f ′(z) is subordinate to a certai...

Journal: :نظریه تقریب و کاربرد های آن 0
mohammad taati department of mathematics, payame noor university, p.o.box 19395-3697, tehran, iran.

in this paper we introduce and investigate a certain subclass of univalentfunctions which are analytic in the unit disk u.such results as coecientinequalities. the results presented here would provide extensions of those givenin earlier works.

2005
D. BSHOUTY Juha M. Heinonen

The aim of this paper is two-fold. First, to give a direct proof for the already established result of Styer which states that a univalent geometrically starlike function f is a univalent annular starlike function if f is bounded. Second, to show that the boundedness condition of f is necessary, thus disproving a conjecture of Styer.

Journal: :Int. J. Math. Mathematical Sciences 2004
Maslina Darus Ajab Akbarally

are classes of starlike and strongly starlike functions of order β (0 < β ≤ 1), respectively. Note that S∗(β)⊂ S∗ for 0< β< 1 and S∗(1)= S∗ [5]. Kanas [2] introduced the subclass R̄δ(β) of function f ∈ S as the following. Definition 1.1. For δ ≥ 0, β ∈ (0,1], a function f normalized by (1.1) belongs to R̄δ(β) if, for z ∈D−{0} and Dδf(z)≠ 0, the following holds: ∣∣∣arg z ( Dδf(z) )′ Dδf(z) ∣∣∣≤ βπ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید