نتایج جستجو برای: 2-absorbing $I$-prime submodule

تعداد نتایج: 3348109  

Let $R$ be a commutative ring and $M$ be an $R$-module. In this paper, we investigate some properties of 2-absorbing submodules of $M$. It is shown that $N$ is a 2-absorbing submodule of $M$ if and only if whenever $IJLsubseteq N$ for some ideals $I,J$ of R and a submodule $L$ of $M$, then $ILsubseteq N$ or $JLsubseteq N$ or $IJsubseteq N:_RM$. Also, if $N$ is a 2-absorbing submodule of ...

Let $R$ be a commutative ring and let $I$ be an ideal of $R$. In this paper, we will introduce the notions of 2-absorbing $I$-prime and 2-absorbing $I$-second submodules of an $R$-module $M$ as a generalization of 2-absorbing and strongly 2-absorbing second submodules of $M$ and explore some basic properties of these classes of modules.

2016
Hojjat Mostafanasab Ece Yetkin Ünsal Tekir Ahmad Yousefian Darani

All rings are commutative with 1 6= 0, and all modules are unital. The purpose of this paper is to investigate the concept of 2-absorbing primary submodules generalizing 2-absorbing primary ideals of rings. Let M be an R-module. A proper submodule N of an R-module M is called a 2-absorbing primary submodule of M if whenever a, b ∈ R and m ∈M and abm ∈ N , then am ∈M -rad(N) or bm ∈M -rad(N) or ...

Journal: : 2023

Let R be a commutative ring with identity , and M is unitary left R-module”, “A proper submodule E of an R-module called weakly quasi-prime if whenever r, s ∈ R, m M, 0 ≠ rsm implies that rm or sm E”. “We introduce the concept quasi 2-absorbing as generalization submodule”, where r,s,t ∈M 0≠ rstm rtm stm E. we study basic properties 2-absorbing. Furthermore, relationships other classes module a...

Journal: :Ibn Al-Haitham Journal For Pure And Applied Science 2023

Let be a module over commutative ring with identity. In this paper we intoduce the concept of Strongly Pseudo Nearly Semi-2-Absorbing submodule, where proper submodule an -module is said to if whenever , for implies that either or generalization 2_Absorbing semi 2-Absorbing and strong form (Nearly–2–Absorbing, Pseudo_2_Absorbing, Semi–2–Absorbing) submodules. Several properties characterization...

Let R be a commutative ring with identity and M be a unitary R-module. Let : S(M) −! S(M) [ {;} be a function, where S(M) is the set of submodules ofM. Suppose n 2 is a positive integer. A proper submodule P of M is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 R and x 2 M and a1 . . . an−1x 2P(P), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x 2 P...

Journal: :Journal of Discrete Mathematical Sciences and Cryptography 2022

Let $G$ be a group with identity $e$, $R$ commutative $G$-graded ring unity $1$ and $M$ unital $R$-module. In this article, we introduce the concept of graded $1$-absorbing prime submodule. A proper $R$-submodule $N$ is said to if for all non-unit homogeneous elements $x, y$ element $m$ $xym\in N$, either $xy\in (N :_{R} M)$ or $m\in N$. We show that new generalization submodules at same time i...

‎In this work‎, ‎we introduce the concept of classical 2-absorbing secondary modules over a commutative ring as a generalization of secondary modules and investigate some basic properties of this class of modules‎. ‎Let $R$ be a commutative ring with‎ ‎identity‎. ‎We say that a non-zero submodule $N$ of an $R$-module $M$ is a‎ ‎emph{classical 2-absorbing secondary submodule} of $M$ ...

Journal: :bulletin of the iranian mathematical society 0
m. ebrahimpour shahid bahonar university of kerman r. nekooei shahid bahonar university of kerman

let r be a commutative ring with identity and m be a unitary r-module. let : s(m) −! s(m) [ {;} be a function, where s(m) is the set of submodules ofm. suppose n  2 is a positive integer. a proper submodule p of m is called(n − 1, n) − -prime, if whenever a1, . . . , an−1 2 r and x 2 m and a1 . . . an−1x 2p(p), then there exists i 2 {1, . . . , n − 1} such that a1 . . . ai−1ai+1 . . . an−1x...

Let $R$ be a commutative ring with identity and $M$ be a unitary $R$-module. Suppose that $phi:S(M)rightarrow S(M)cup lbraceemptysetrbrace$ be a function where $S(M)$ is the set of all submodules of $M$. A proper submodule $N$ of $M$ is called an $(n-1, n)$-$phi$-classical prime submodule, if whenever $r_{1},ldots,r_{n-1}in R$ and $min M$ with $r_{1}ldots r_{n-1}min Nsetminusphi(N)$, then $r_{1...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید