نتایج جستجو برای: Ant colony optimization (ACO)

تعداد نتایج: 380102  

Journal: :geopersia 2015
ali kadkhodaie-ilkhchi

optimization of reservoir parameters is an important issue in petroleum exploration and production. the ant colony optimization(aco) is a recent approach to solve discrete and continuous optimization problems. in this paper, the ant colony optimization is usedas an intelligent tool to estimate reservoir rock properties. the methodology is illustrated by using a case study on shear wave velocity...

پایان نامه :دانشگاه آزاد اسلامی - دانشگاه آزاد اسلامی واحد تهران مرکزی - دانشکده برق و الکترونیک 1390

there are many approaches for solving variety combinatorial optimization problems (np-compelete) that devided to exact solutions and approximate solutions. exact methods can only be used for very small size instances due to their expontional search space. for real-world problems, we have to employ approximate methods such as evolutionary algorithms (eas) that find a near-optimal solution in a r...

Journal: Geopersia 2015

Optimization of reservoir parameters is an important issue in petroleum exploration and production. The Ant Colony Optimization(ACO) is a recent approach to solve discrete and continuous optimization problems. In this paper, the Ant Colony Optimization is usedas an intelligent tool to estimate reservoir rock properties. The methodology is illustrated by using a case study on shear wave velocity...

2015
Satish Kumar T. Sita Mahalakshmi

This paper presents improved Ant Colony Optimization (ACO) algorithms for data mining. The goal of the algorithms is to extract classification rules from data. The traditional Ant Colony Optimization algorithm is enhanced with genetic operators to develop improved ACO algorithms. The genetic operators like crossover, mutation are used to develop Ant Colony Optimization with Crossover (ACOC), AC...

2013
Zainudin Zukhri Irving Vitra Paputungan

In optimization problem, Genetic Algorithm (GA) and Ant Colony Optimization Algorithm (ACO) have been known as good alternative techniques. GA is designed by adopting the natural evolution process, while ACO is inspired by the foraging behaviour of ant species. This paper presents a hybrid GA-ACO for Travelling Salesman Problem (TSP), called Genetic Ant Colony Optimization (GACO). In this metho...

E. Salajegheh, J. Salajegheh , M. Mashayekhi, M.J. Fadaee,

A two-stage optimization method is presented by employing the evolutionary structural optimization (ESO) and ant colony optimization (ACO), which is called ESO-ACO method. To implement ESO-ACO, size optimization is performed using ESO, first. Then, the outcomes of ESO are employed to enhance ACO. In optimization process, the weight of double layer grid is minimized under various constraints whi...

2013
Guo Hong

Quadratic assignment problem (QAP) is one of fundamental combinatorial optimization problems in many fields. Many real world applications such as backboard wiring, typewriter keyboard design and scheduling can be formulated as QAPs. Ant colony algorithm is a multi-agent system inspired by behaviors of real ant colonies to solve optimization problems. Ant colony optimization (ACO) is one of new ...

2014
Shunkun Yang Tianlong Man Jiaqi Xu

Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to produce the phenomenon of stagnation and precocity. This paper introduces improve...

2004
Jiann-Horng Lin

This paper presents a modification of the ant colony optimization algorithm (ACO) intended to introduce psychology factor of emotion into the algorithm. We define only two emotions ants could have, positive and negative, and correspond to two reaction to perception respectively. For avoiding premature convergence allows Emotional Ant Colony Optimization (EACO) to continue search for better even...

In this paper, optimal placement of Phasor Measurement Unit (PMU) using Global Positioning System (GPS) is discussed. Ant Colony Optimization (ACO), Simulated Annealing (SA), Particle Swarm Optimization (PSO) and Genetic Algorithm (GA) are used for this problem. Pheromone evaporation coefficient and the probability of moving from state x to state y by ant are introduced into the ACO. The modifi...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید