The distinguishing number (resp. index) $D(G)$ ($D'(G)$) of a graph $G$ is the least integer $d$
such that $G$ has an vertex labeling (resp. edge labeling) with $d$ labels that is preserved only by a trivial
automorphism. For any $n in mathbb{N}$, the $n$-subdivision of $G$ is a simple graph $G^{frac{1}{n}}$ which is constructed by replacing each edge of $G$ with a path of length $n$...