نتایج جستجو برای: FeCo Nanoparticles

تعداد نتایج: 107511  

Journal: :Journal of the American Chemical Society 2007
Girija S Chaubey Carlos Barcena Narayan Poudyal Chuanbing Rong Jinming Gao Shouheng Sun J Ping Liu

FeCo alloys are an important soft magnetic material because of their unique magnetic properties including large permeability and very high saturation magnetization. FeCo nanoparticles are ideal building blocks for nanostructured thin film or bulk magnetic materials1-3 and are also suitable for biomedical applications.4 However, synthesis of monodisperse FeCo nanoparticles remains a challenging ...

2011
Narayan Poudyal Ping Liu

We report here the preparation of Fe, Co, and FeCo nanoplates and nanoparticles by ball milling in the presence of surfactants in organic solvents. By controlling the milling and centrifugation conditions, the Fe, Co, and FeCo nanoplates and nanoparticles with different sizes were successfully obtained, from the slurries and from the top part of the solutions, respectively. The thickness of the...

2014
Amin Azizi Brian S. Mitchell Noshir S. Pesika

Among various magnetic nanoparticles that have been studied for potential biomedical applications, FeCo nanoparticles are promising candidates because of their high saturation magnetization and high Curie temperature. [ 3–5 ] However, the ease of oxidation, dissolution in acidic environments, and potential toxicity of these materials in their native state restrict their use in biomedical applic...

2008
H. Kosuge M. Terashima M. Uchida S. Sherlock P. S. Tsao M. J. Young T. Douglas H. Dai M. V. McConnell

Introduction: Inflammation plays a critical role in the progression of atherosclerosis. Novel iron-based nanoparticle platforms may allow noninvasive high-field MRI detection of vascular macrophages in mouse arteries. Purpose: To evaluate two novel nanoparticle platforms – magnetite incorporated human ferritin protein cages (HFn-Fe) and graphite/FeCo core-shell nanocrystals (G-FeCo) – for MRI o...

In this study, we reported a facile synthesis of bimetallic FeCo nanoparticles (Fe-Co NPs) by FeSO4.7H2O and Co(Ac)2.4H2O in the presence of sodium borohydride and 2-thiotic acid. The structure and morphology of the nanoparticles were characterized by X-Ray Diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDS), and Transmission Electron Micros...

2011
Hisanori Kosuge Sarah P. Sherlock Toshiro Kitagawa Masahiro Terashima Joëlle K. Barral Dwight G. Nishimura Hongjie Dai Michael V. McConnell

BACKGROUND FeCo/graphitic-carbon nanocrystals (FeCo/GC) are biocompatible, high-relaxivity, multi-functional nanoparticles. Macrophages represent important cellular imaging targets for assessing vascular inflammation. We evaluated FeCo/GC for vascular macrophage uptake and imaging in vivo using fluorescence and MRI. METHODS AND RESULTS Hyperlipidemic and diabetic mice underwent carotid ligati...

2014
M. G. Christiansen A. W. Senko R. Chen G. Romero P. Anikeeva

Articles you may be interested in Recording-media-related morphology and magnetic properties of crystalline CoPt3 and CoPt3-Au core-shell nanoparticles synthesized via reverse microemulsion Publisher's Note: " Simple models for dynamic hysteresis loop calculations of magnetic single-domain nanoparticles: Application to magnetic hyperthermia optimization " [J. Magnetic hyperthermia in single-dom...

Journal: :Dalton transactions 2017
Zezhou Yang Yun Zhu Guangdi Nie Meixuan Li Ce Wang Xiaofeng Lu

A simple and low cost detection of l-cysteine is essential in the fields of biosensors and medical diagnosis. In this study, we have developed a simple electrospinning, followed by calcination process to prepare FeCo nanoparticles embedded in carbon nanofibers (FeCo-CNFs) as an efficient peroxidase-like mimic for the detection of l-cysteine. FeCo nanoparticles are uniformly dispersed within CNF...

Journal: :Biomaterials 2009
Pierre Pouponneau Jean-Christophe Leroux Sylvain Martel

In this work, therapeutic magnetic micro carriers (TMMC) guided in real time by a magnetic resonance imaging (MRI) system are proposed as a mean to improve drug delivery to tumor sites. MRI steering constraints and physiological parameters for the chemoembolization of liver tumors were taken into account to design magnetic iron-cobalt nanoparticles encapsulated into biodegradable poly(d,l-lacti...

Journal: :Nanosystems: Physics, Chemistry, Mathematics 2016

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید