نتایج جستجو برای: Fourth-order exponential time differenceing Runge-Kutta method

تعداد نتایج: 3828676  

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

2016
Zheng Sun Chi-Wang Shu

In this paper, we analyze the stability of the fourth order Runge-Kutta method for integrating semi-discrete approximations of time-dependent partial differential equations. Our study focuses on linear problems and covers general semi-bounded spatial discretizations. A counter example is given to show that the classical four-stage fourth order Runge-Kutta method can not preserve the one-step st...

Journal: :SIAM J. Scientific Computing 2011
C. Klein K. Roidot

Purely dispersive partial differential equations such as the Korteweg–de Vries equation, the nonlinear Schrödinger equation, and higher dimensional generalizations thereof can have solutions which develop a zone of rapid modulated oscillations in the region where the corresponding dispersionless equations have shocks or blow-up. To numerically study such phenomena, fourth order time-stepping in...

2014
Qun Wu Enwei Chen Yimin Lu Zhengshi Liu Xiang Tang

In this paper, based on the classical Fourth-Order Runge-Kutta method, the modified FourthOrder Runge-Kutta method is presented for solving nonlinear vibration of axially travelling string system, that is to solve time varying and nonlinear differential equations. The classical Fourth-Order Runge-Kutta method can only be used to solve first-order linear differential equations. Its main idea is ...

2013
Pieter D. Boom David. W. Zingg

This paper presents an overview of high-order implicit time integration methods and their associated properties with a specific focus on their application to computational fluid dynamics. A framework is constructed for the development and optimization of general implicit time integration methods, specifically including linear multistep, Runge-Kutta, and multistep Runge-Kutta methods. The analys...

2012

This study utilized combination of phase plots,time steps distribution and adaptive time steps Runge-Kutta and f if th order algorithms to investigate a harmonically Duff ing oscillator.The object is to visually compare fourth and f if th order Runge-Kutta algorithms performance as tools for seeking the chaotic solutions of a harmonically excited Duffing oscillator.Though fif th order algorithm...

2013
T A Salau

This study utilised positive Lyapunov exponents’ criteria to develop chaos diagram on the parameters space of 4-dimensional harmonically excited vibration absorber control Duffing’s Oscillator. Relevant simulations were effected by choice combination of constant step Runge-Kutta methods and Grahm Schmidt Orthogonal rules. Simulations of 4-dimensional hyper-chaotic models of modified Lorenz and ...

2011
Ishtiaq Ali Saeed Islam I. Siddique Nasro Min-Allah

Abstract: This paper presents some numerical methods for Allen-Cahn equation using different time stepping and space discretization methods with non-periodic boundary conditions. In space the equation is discretized by Chebyshev spectral method, while in time the exponential time differencing fourth-order Runge-Kutta (ETDRK4) and implicit-explicit scheme is used. For comparison we also use the ...

2016
H. M. Abdelhafez

The modified differential transform method (MDTM), Laplace transform and Padé approximants are used to investigate a semi-analytic form of solutions of nonlinear oscillators in a large time domain. Forced Duffing and forced van der Pol oscillators under damping effect are studied to investigate semi-analytic forms of solutions. Moreover, solutions of the suggested nonlinear oscillators are obta...

Journal: :J. Computational Applied Mathematics 2014
Vu Thai Luan Alexander Ostermann

Exponential Runge–Kutta methods constitute efficient integrators for semilinear stiff problems. So far, however, explicit exponential Runge–Kutta methods are available in the literature up to order 4 only. The aim of this paper is to construct a fifth-order method. For this purpose, we make use of a novel approach to derive the stiff order conditions for high-order exponential methods. This all...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید