نتایج جستجو برای: Graphs with exactly two non-negative eigenvalues

تعداد نتایج: 10414518  

Mohammad Reza Oboudi, Tajedin Derikvand

Let $G$ be a graph with eigenvalues $lambda_1(G)geqcdotsgeqlambda_n(G)$. In this paper we find all simple graphs $G$ such that $G$ has at most twelve vertices and $G$ has exactly two non-negative eigenvalues. In other words we find all graphs $G$ on $n$ vertices such that $nleq12$ and $lambda_1(G)geq0$, $lambda_2(G)geq0$ and $lambda_3(G)0$, $lambda_2(G)>0$ and $lambda_3(G)

Journal: :Algebraic structures and their applications 2017

Journal: :Linear Algebra and its Applications 2009

Journal: :Publications de l'Institut Mathematique 2002

Journal: :Ars Mathematica Contemporanea 2019

Journal: :Appl. Math. Lett. 2006
Yaoping Hou Feng Tian

An eigenvalue of a graph G is called a main eigenvalue if it has an eigenvector the sum of whose entries is not equal to zero, and it is well known that a graph has exactly one main eigenvalue if and only if it is regular. In this work, all connected unicyclic graphs with exactly two main eigenvalues are determined. c © 2006 Elsevier Ltd. All rights reserved.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید