نتایج جستجو برای: Modified complex Helmholtz equation

تعداد نتایج: 1229071  

Journal: :Numerical Lin. Alg. with Applic. 2014
Siegfried Cools Bram Reps Wim Vanroose

Pushed by the rising interest in high resolution requirements and high-dimensional applications, the diffusion term in the Laplacian equation drives the condition number of the associated discretized operator to undesirable sizes for standard iterative methods to converge rapidly. In addition, for realistic values of the wavenumber k(x) in (1), the Helmholtz operator H becomes indefinite, destr...

Journal: :Math. Comput. 2009
Jie Shen Li-Lian Wang

We consider in this paper approximation properties and applications of Mathieu functions. A first set of optimal error estimates are derived for the approximation of periodic functions by using angular Mathieu functions. These approximation results are applied to study the Mathieu-Legendre approximation to the modified Helmholtz equation and Helmholtz equation. Illustrative numerical results co...

Journal: :Eastern-European Journal of Enterprise Technologies 2014

Journal: :Journal of Mathematical Analysis and Applications 2007

Journal: :J. Comput. Physics 2011
Mary Catherine A. Kropinski Bryan D. Quaife

Talk Abstract We present an efficient integral equation method approach to solve the forced heat equation, ut(x) − ∆u(x) = F (x, u, t), in a two dimensional, multiply connected domain, with Dirichlet boundary conditions. We first discretize in time, which is known as Rothe’s method, resulting in a non-homogeneous modified Helmholtz equation that is solved at each time step. We formulate the sol...

Journal: :Optics express 2008
Khai Q Le R Godoy-Rubio Peter Bienstman G Ronald Hadley

A new complex Jacobi iterative technique adapted for the solution of three-dimensional (3D) wide-angle (WA) beam propagation is presented. The beam propagation equation for analysis of optical propagation in waveguide structures is based on a novel modified Padé(1,1) approximant operator, which gives evanescent waves the desired damping. The resulting approach allows more accurate approximation...

Journal: :Optics express 2011
Kasper Reck Erik V Thomsen Ole Hansen

The scalar wave equation, or Helmholtz equation, describes within a certain approximation the electromagnetic field distribution in a given system. In this paper we show how to solve the Helmholtz equation in complex geometries using conformal mapping and the homotopy perturbation method. The solution of the mapped Helmholtz equation is found by solving an infinite series of Poisson equations u...

2013
Oliver G. Ernst Martin J. Gander M. J. Gander

We analyze in detail two-grid methods for solving the 1D Helmholtz equation discretized by a standard finite-difference scheme. We explain why both basic components, smoothing and coarse-grid correction, fail for high wave numbers, and show how these components can be modified to obtain a convergent iteration. We show how the parameters of a two-step Jacobi method can be chosen to yield a stabl...

2006
Y. A. Erlangga C. Vuik C. W. Oosterlee

Within the framework of shifted-Laplace preconditioners [Erlangga, Vuik, Oosterlee, Appl. Numer. Math., 50(2004), pp.409–425] for the Helmholtz equation, different methods for the approximation of the inverse of a complex-valued Helmholtz operator are discussed. The performance of the preconditioner for Helmholtz problems at high wavenumbers in heterogeneous media is evaluated. Comparison with ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید