نتایج جستجو برای: Photoneutron Contamination
تعداد نتایج: 53008 فیلتر نتایج به سال:
Medical linear accelerators are one of the most widespread methods for cancer treatment. Despite their advantages, unwanted photoneutrons are produced by high energy linacs. This photoneutrons are as undesired doses to patients and a significant problem for radiation protection of the staffs and patients. Photoneutrons radiological risk must be evaluated because of their high LET and range.in o...
medical linear accelerators are one of the most widespread methods for cancer treatment. despite their advantages, unwanted photoneutrons are produced by high energy linacs. this photoneutrons are as undesired doses to patients and a significant problem for radiation protection of the staffs and patients. photoneutrons radiological risk must be evaluated because of their high let and range.in o...
Medical linear accelerators are one of the most widespread methods for cancer treatment. Despite their advantages, unwanted photoneutrons are produced by high energy linacs. This photoneutrons are as undesired doses to patients and a significant problem for radiation protection of the staffs and patients. Photoneutrons radiological risk must be evaluated because of their high LET and range.in o...
Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...
Introduction: This study aimed to measure the neutron contamination of flattening filter (FF) and flattening filter-free (FFF) 10-MV photon beams delivered by the Elekta InfinityTM accelerator. Material and Methods: The photoneutron spectrum produced by the Linac head was evaluated using a Monte Carlo (MC) simulation. The geometry ...
BACKGROUND AND AIM Today, electron accelerators are taken into consideration as photoneutron sources. Therefore, for maximum production of epithermal neutron flux, designing a photoneutron target is of significant importance. In this paper, the effect of thickness and geometric shape of a photoneutron target on neutron output were investigated. METHODS In this study, a pencil photon source wi...
Introduction: The utilization of high-energy photons in the medical linear accelerator can lead to photoneutron production. This study aimed to evaluate the effect of the physical components of the head, including flattening filter (FF) andmultileaf collimator (MLC), as well as the dependence of therapeutic field size on the photoneutron spectrum, dose, and flux. <str...
III. 1. NUCLEAR FISSION REACTIONS ............................................................................................. 7 III. 2. NUCLEAR REACTORS ............................................................................................................. 7 III. 3. SPALLATION SOURCES ..........................................................................................................
BACKGROUND High-energy linear accelerator (linac) is a valuable tool and the most commonly used device for external beam radiation treatments in cancer patients. In the linac head, high-energy photons with energies above the threshold of (γ,n) interaction produce photoneutrons. These photoneutrons deliver the extra dose to the patients undergoing radiation treatment and increase the risk of sec...
This study involves the measurement of photoneutron contamination emitted from a Siemens Primus medical linear accelerator by using BD-PND bubble detectors. Various bubble detectors were arranged around the linac head with the interval of I m and at the same height as the isocenter to measure the dose equivalent distribution in the treatment room. The measurements were performed for 15 MV X-ray...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید