نتایج جستجو برای: Radial Breathing Mode (RBM) Frequency

تعداد نتایج: 766395  

Journal: :international journal of nanoscience and nanotechnology 2011
s. basir jafari r. malekfar s. e. khadem

in this paper, the radial breathing mode (rbm) frequencies of multi-walled carbon nanotubes (mwcnts) are  obtained based on the multiple-elastic thin shell model. for this purpose, mwcnt is considered as a multiple concentric elastic thin cylindrical shells, which are coupled through van der waals (vdw) forces between two adjacent tubes. lennard-jones potential is used to calculate the vdw forc...

2011
Niculina Peica Christian Thomsen Janina Maultzsch

Here, we show that the Raman intensity of the G-mode in tip-enhanced Raman spectroscopy (TERS) is strongly dependent on the height of the bundle. Moreover, using TERS we are able to position different single-walled carbon nanotubes along a bundle, by correlating the observed radial breathing mode (RBM) with the AFM topography at the measuring point. The frequency of the G- mode behaves differen...

In this paper, the radial breathing mode (RBM) frequency of single-walled carbon nanotube (SWCNT) is studied based on the thin shell theory. For this purpose, SWCNT is considered as an elastic thin cylindrical shell. The dynamic equation of RBM is derived using the Hamilton’s principle. An analytical solution of the RBM frequency of SWCNT is obtained. The advantage of this formulation is that i...

Journal: :Nano letters 2007
Xiaojie Duan Hyungbin Son Bo Gao Jin Zhang Tianjiao Wu Georgy G Samsonidze Mildred S Dresselhaus Zhongfan Liu Jing Kong

Resonance Raman spectra of individual strained ultralong single-wall carbon nanotubes (SWNTs) are studied. Torsional and uniaxial strains are introduced by atomic force microscopy manipulation. Torsional strain strongly affects the Raman spectra, inducing a large downshift in the E2 symmetry mode in the G+ band, but a slight upshift for the rest of the G modes and also an upshift in the radial ...

Journal: :Physical review letters 2009
Soon-Kil Joung Toshiya Okazaki Naoki Kishi Susumu Okada Shunji Bandow Sumio Iijima

We investigate the effects of C60 fullerene encapsulation on the radial breathing mode (RBM) of semiconducting single-wall carbon nanotubes (SWCNTs) under tunable laser excitations. The changes in the RBM frequencies after C60 insertions show characteristic behavior; higher frequency shifts are observed in the case of smaller diameter tubes (dt<or =1.32 nm) and lower frequency shifts, in the ca...

2009
BY M. X. SHI Q. M. LI Y. HUANG

We show, by molecular dynamics simulations, that 2 : 1 internal resonance may occur between a radial breathing mode (RBM) and a circumferential flexural mode (CFM) in single-walled carbon nanotubes (SWCNTs). When the RBM vibration amplitude is greater than a critical value, automatic transformations between the RBM and CFM with approximately half RBM-frequency are observed. This discovery in th...

1990
J.-H. Kim K. Sato R. Saito

We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. U...

2011
Xiao-Wen Lei Qing-Qing Ni Jin-Xing Shi Toshiaki Natsuki

In this paper, a theoretical analysis of the radial breathing mode (RBM) of carbon nanotubes (CNTs) subjected to axial pressure is presented based on an elastic continuum model. Single-walled carbon nanotubes (SWCNTs) are described as an individual elastic shell and double-walled carbon nanotubes (DWCNTs) are considered to be two shells coupled through the van der Waals force. The effects of ax...

Journal: :Physical review letters 2013
Qi-Lin Zhang Wei-Zhou Jiang Jian Liu Ren-De Miao Nan Sheng

Molecular dynamics simulations are performed to investigate the water permeation across the single-walled carbon nanotube with the radial breathing mode (RBM) vibration. It is found that the RBM can play a significant role in breaking the hydrogen bonds of the water chain, accordingly increasing the net flux dramatically, and reducing drastically the average number of water molecules inside the...

Journal: :Physical review letters 2009
H Farhat K Sasaki M Kalbac M Hofmann R Saito M S Dresselhaus J Kong

The softening of the radial breathing mode (RBM) of metallic single walled carbon nanotubes (m-SWNTs) due to electron-phonon coupling has been studied by observing the Fermi level [see text] dependence of the RBM Raman peak. In situ Raman spectra were obtained from several individual m-SWNTs while varying [see text] electrochemically. The RBM frequency of an intrinsic m-SWNT is shown to be down...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید