نتایج جستجو برای: Retrotransposons

تعداد نتایج: 2591  

Journal: :Current Biology 2012

Journal: :Annual review of genetics 2008
Arthur Beauregard M Joan Curcio Marlene Belfort

Retrotransposons mobilize via RNA intermediates and usually carry with them the agent of their mobility, reverse transcriptase. Retrotransposons are streamlined, and therefore rely on host factors to proliferate. However, retrotransposons are exposed to cellular forces that block their paths. For this review, we have selected for our focus elements from among target-primed (TP) retrotransposons...

Journal: :Briefings in functional genomics & proteomics 2009
Tobias Mourier Eske Willerslev

Retrotransposons constitute a significant fraction of mammalian genomes. Considering the finding of widespread transcriptional activity across entire genomes, it is not surprising that retrotransposons contribute to the collective RNA pool. However, the transcriptional output from retrotransposons does not merely represent spurious transcription. We review examples of functional RNAs transcribe...

Journal: :Current Biology 2012
David J. Finnegan

June 27, 1970 was a significant day for our understanding of both the flow of information in biological systems and the evolution of eukaryotic genomes as this was the day that Nature published back-to-back papers reporting the discovery of an enzyme that copies RNA into DNA. This soon became known as reverse transcriptase and the RNA tumour viruses in which it was detected were renamed retrovi...

Journal: :Genome research 2001
H S Malik T H Eickbush

We have conducted a phylogenetic analysis of the Ribonuclease HI (RNH) domains present in Eubacteria, Eukarya, all long-term repeat (LTR)-bearing retrotransposons, and several late-branching clades of non-LTR retrotransposons. Analysis of this simple yet highly conserved enzymatic domain from these disparate sources provides surprising insights into the evolution of eukaryotic retrotransposons....

2013
Nemanja Rodić Kathleen H. Burns

LINE-1 (L1) retrotransposons make up a significant portion of human genomes, with an estimated 500,000 copies per genome. Like other retrotransposons, L1 retrotransposons propagate through RNA sequences that are reverse transcribed into DNA sequences, which are integrated into new genomic loci. L1 somatic insertions have the potential to disrupt the transcriptome by inserting into or nearby gen...

Journal: :Molecular biology and evolution 2012
Irina Sormacheva Georgiy Smyshlyaev Vladimir Mayorov Alexander Blinov Anton Novikov Olga Novikova

Horizontal transfer (HT) is a complex phenomenon usually used as an explanation of phylogenetic inconsistence, which cannot be interpreted in terms of vertical evolution. Most examples of HT of eukaryotic genes involve transposable elements. An intriguing feature of HT is that its frequency differs among transposable elements classes. Although HT is well known for DNA transposons and long termi...

Journal: :Yeast 2001
T J Goodwin R T Poulter

We have undertaken an analysis of the retrotransposons in the medically important basidiomycetous fungus Cryptococcus neoformans. Using the data generated by a C. neoformans genome sequencing project at the Stanford Genome Technology Center, 15 distinct families of LTR retrotransposons and several families of non-LTR retrotransposons were identified. Members of at least seven families have tran...

2017
Yongji Huang Ling Luo Xuguang Hu Fan Yu Yongqing Yang Zuhu Deng Jiayun Wu Rukai Chen Muqing Zhang

Erianthus arundinaceus is an important wild species of the genus Saccharum with many valuable traits. However, the composition and structure of its genome are largely unknown, which have hindered its utilization in sugarcane breeding and evolutionary research. Retrotransposons constitute an appreciable fraction of plant genomes and may have played a significant role in the evolution and sequenc...

2015
Kirill Ustyantsev Olga Novikova Alexander Blinov Georgy Smyshlyaev

Ty3/Gypsy long terminals repeat (LTR) retrotransposons are structurally and phylogenetically close to retroviruses. Two notable structural differences between these groups of genetic elements are 1) the presence in retroviruses of an additional envelope gene, env, which mediates infection, and 2) a specific dual ribonuclease H (RNH) domain encoded by the retroviral pol gene. However, similar to...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید