نتایج جستجو برای: Ricci operator

تعداد نتایج: 98899  

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

2007
Miguel Brozos-Vazquez Eduardo Garcia-Rio Peter B. Gilkey Ramon Vazquez-Lorenzo

We exhibit Walker manifolds of signature (2, 2) with various commutativity properties for the Ricci operator, the skew-symmetric curvature operator, and the Jacobi operator. If the Walker metric is a Riemannian extension of an underlying affine structure A, these properties are related to the Ricci tensor of A.

Let M^2n be a hoph hypersurfaces with parallel ricci operator and tangent to structure vector field in Sasakian space form. First, we show that structures and properties of hypersurfaces and hoph hypersurfaces in Sasakian space form. Then we study the structure of hypersurfaces and hoph hypersurfaces with a parallel ricci tensor structure and show that there are two cases. In the first case, th...

2008
Julien Keller

In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics. A. Nadel has defined an iteration scheme given by the Ricci operator for Fano manifold and asked whether it has some nontrivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of it...

2008
Julien Keller

In this paper we consider the dynamical system involved by the Ricci operator on the space of Kähler metrics. A. Nadel has defined an iteration scheme given by the Ricci operator for Fano manifold and asked whether it has some nontrivial periodic points. First, we prove that no such periodic points can exist. We define the inverse of the Ricci operator and consider the dynamical behaviour of it...

2008
WEI-DONG RUAN YUGUANG ZHANG Z. ZHANG

If a normalized Kähler-Ricci flow g(t), t ∈ [0,∞), on a compact Kähler manifold M , dimC M = n ≥ 3, with positive first Chern class satisfies g(t) ∈ 2πc1(M) and has curvature operator uniformly bounded in Ln-norm, the curvature operator will also be uniformly bounded along the flow. Consequently the flow will converge along a subsequence to a Kähler-Ricci soliton.

Journal: :bulletin of the iranian mathematical society 2011
x. liu a. wang a. song

2001
Bennett Chow

In [LY] a differential Harnack inequality was proved for solutions to the heat equation on a Riemannian manifold. Inspired by this result, Hamilton first proved trace and matrix Harnack inequalities for the Ricci flow on compact surfaces [H0] and then vastly generalized his own result to all higher dimensions for complete solutions of the Ricci flow with nonnegative curvature operator [ H2]. So...

2015
ANTONIO G. ACHE MICAH W. WARREN

For a submanifold Σ ⊂ R Belkin and Niyogi showed that one can approximate the Laplacian operator using heat kernels. Using a definition of coarse Ricci curvature derived by iterating Laplacians, we approximate the coarse Ricci curvature of submanifolds Σ in the same way. More generally, on any metric measure we are able to approximate a 1-parameter family of coarse Ricci functions that include ...

2006
Xiaodong Cao

In this paper, we study the dilation limit of solutions to the Ricci flow on manifolds with nonnegative curvature operator. We first show that such a dilation limit must be a product of a compact ancient Type I solution of the Ricci flow with flat factors. Then we show under the Type I normalized Ricci flow, the compact factor has a subsequence converge to a Ricci soliton.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید