نتایج جستجو برای: SCN1A
تعداد نتایج: 569 فیلتر نتایج به سال:
PURPOSE The SCN1A gene is one of the most commonly mutated human epilepsy genes associated with a spectrum of phenotypes with variable degrees of severity. Despite over 1200 distinct mutations reported, it is still hard to draw clear genotype-phenotype relationships, since genetic and environmental modifiers contribute to the development of a particular disease caused by an SCN1A mutation. We a...
OBJECTIVE Developmental disorders including cognitive deficit, hyperkinetic disorder, and autistic behaviors are frequently comorbid in epileptic patients with SCN1A mutations. However, the mechanisms underlying these developmental disorders are poorly understood and treatments are currently unavailable. Using a rodent model with an Scn1a mutation, we aimed to elucidate the pathophysiologic bas...
We examined cases of severe myoclonic epilepsy of infancy (SMEI) for exon deletions or duplications within the sodium channel SCN1A gene by multiplex ligation-dependent probe amplification. Two of 13 patients (15%) who fulfilled the strict clinical definition of SMEI but without SCN1A coding or splicing mutations had exonic deletions of SCN1A.
Severe myoclonic epilepsy of infancy (SMEI) is associated with loss of function of the SCN1A gene encoding the NaV1.1 sodium channel isoform. Previous studies in Scn1a(-/+) mice during the pre-epileptic period reported selective reduction in interneuron excitability and proposed this as the main pathological mechanism underlying SMEI. Yet, the functional consequences of this interneuronal dysfu...
Mutations in the voltage-gated sodium channel SCN1A are responsible for a number of seizure disorders including Generalized Epilepsy with Febrile Seizures Plus (GEFS+) and Severe Myoclonic Epilepsy of Infancy (SMEI). To determine the effects of SCN1A mutations on channel function in vivo, we generated a bacterial artificial chromosome (BAC) transgenic mouse model that expresses the human SCN1A ...
BACKGROUND Sanger sequencing, still the standard technique for genetic testing in most diagnostic laboratories and until recently widely used in research, is gradually being complemented by next-generation sequencing (NGS). No single mutation detection technique is however perfect in identifying all mutations. Therefore, we wondered to what extent inconsistencies between Sanger sequencing and N...
Background: Voltage-gated sodium channels are responsible for the initial-depolarization component of action potentials in brain neurons, and hence they are the target for widely used antiepileptic drugs such as carbamazepine (CBZ). With the working hypothesis that genetic defect in voltage-gated sodium channels can alter the response to CBZ, this study was performed to elucidate the relationsh...
The mammalian genome contains four voltage-gated sodium channel genes that are primarily expressed in the central nervous system: SCN1A, SCN2A, SCN3A and SCN8A. Mutations in SCN1A and SCN2A are responsible for several dominant idiopathic epilepsy disorders, including generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI). Mutations in SCN8A are a...
OBJECTIVE The aim of this study was to characterize the SCN1A mutation spectrum in Korean patients with Dravet syndrome. METHODS Twenty-nine patients diagnosed with Dravet syndrome at the Seoul National University Children's Hospital were included in the study. Direct sequencing and multiplex ligation-dependent probe amplification (MLPA) were used to identify SCN1A mutations. Mutations were c...
PURPOSE SCN1A is the most clinically relevant epilepsy gene, most mutations lead to severe myoclonic epilepsy of infancy (SMEI) and generalized epilepsy with febrile seizures plus (GEFS+). We studied 132 patients with epilepsy syndromes with seizures precipitated by fever, and performed phenotype-genotype correlations with SCN1A alterations. METHODS We included patients with SMEI including bo...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید