نتایج جستجو برای: Seidel signless Laplacian matrix

تعداد نتایج: 375920  

Let $S(G)$ be the Seidel matrix of a graph $G$ of order $n$ and let $D_S(G)=diag(n-1-2d_1, n-1-2d_2,ldots, n-1-2d_n)$ be the diagonal matrix with $d_i$ denoting the degree of a vertex $v_i$ in $G$. The Seidel Laplacian matrix of $G$ is defined as $SL(G)=D_S(G)-S(G)$ and the Seidel signless Laplacian matrix as $SL^+(G)=D_S(G)+S(G)$. The Seidel signless Laplacian energy $E_{SL^+...

Journal: :algebraic structures and their applications 2014
fatemeh taghvaee gholam hossein fath-tabar

let $g = (v, e)$ be a simple graph. denote by $d(g)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $a(g)$ the adjacency matrix of $g$. the  signless laplacianmatrix of $g$ is $q(g) = d(g) + a(g)$ and the $k-$th signless laplacian spectral moment of  graph $g$ is defined as $t_k(g)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

Fatemeh Taghvaee Gholam Hossein Fath-Tabar,

Let $G = (V, E)$ be a simple graph. Denote by $D(G)$ the diagonal matrix $diag(d_1,cdots,d_n)$, where $d_i$ is the degree of vertex $i$  and  $A(G)$ the adjacency matrix of $G$. The  signless Laplacianmatrix of $G$ is $Q(G) = D(G) + A(G)$ and the $k-$th signless Laplacian spectral moment of  graph $G$ is defined as $T_k(G)=sum_{i=1}^{n}q_i^{k}$, $kgeqslant 0$, where $q_1$,$q_2$, $cdots$, $q_n$ ...

2011
Sheng-Lung Peng Yu-Wei Tsay

The spectrum of a matrix M is the multiset that contains all the eigenvalues of M. If M is a matrix obtained from a graph G, then the spectrum of M is also called the graph spectrum of G. If two graphs has the same spectrum, then they are cospectral (or isospectral) graphs. In this paper, we compare four spectra of matrices to examine their accuracy in protein structural comparison. These four ...

Journal: :Linear & Multilinear Algebra 2022

The universal adjacency matrix U of a graph Γ, with A, is linear combination the diagonal D vertex degrees, identity I, and all-1 J real coefficients, that is, U=c1A+c2D+c3I+c4J, ci∈R c1≠0. Thus, in particular cases, may be matrix, Laplacian, signless Seidel matrix. In this paper, we develop method for determining spectra bases all corresponding eigenspaces arbitrary lifts graphs (regular or no...

‎For a simple graph $G$‎, ‎the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$‎, ‎where $q^{}_1‎, ‎q^{}_2‎, ‎dots‎, ‎q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$‎. ‎In this paper‎, ‎we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...

2017
Guanglong Yu Shuguang Guo Meiling Xu GUANGLONG YU SHUGUANG GUO MEILING XU

For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.

2013
GUANGLONG YU SHUGUANG GUO MEILING XU

For a graph, the least signless Laplacian eigenvalue is the least eigenvalue of its signless Laplacian matrix. This paper investigates how the least signless Laplacian eigenvalue of a graph changes under some perturbations, and minimizes the least signless Laplacian eigenvalue among all the nonbipartite graphs with given matching number and edge cover number, respectively.

2016
Weige XI Ligong WANG

Let −→ G be a digraph and A( −→ G) be the adjacency matrix of −→ G . Let D( −→ G) be the diagonal matrix with outdegrees of vertices of −→ G and Q( −→ G) = D( −→ G) + A( −→ G) be the signless Laplacian matrix of −→ G . The spectral radius of Q( −→ G) is called the signless Laplacian spectral radius of −→ G . In this paper, we determine the unique digraph which attains the maximum (or minimum) s...

2010
Leonardo Silva de Lima Carla Silva Oliveira Nair Maria Maia de Abreu Vladimir Nikiforov

Recently the signless Laplacian matrix of graphs has been intensively investigated. While there are many results about the largest eigenvalue of the signless Laplacian, the properties of its smallest eigenvalue are less well studied. The present paper surveys the known results and presents some new ones about the smallest eigenvalue of the signless Laplacian.

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید