نتایج جستجو برای: Sidon
تعداد نتایج: 262 فیلتر نتایج به سال:
We give explicit constructions of sets S with the property that for each integer k, there are at most g solutions to k = s1 + s2, si ∈ S; such sets are called Sidon sets if g = 2 and generalized Sidon sets (or B2[ ⌈ g/2 ⌉ ] sets) if g ≥ 3. We extend to generalized Sidon sets the Sidon-set constructions of Singer, Bose, and Ruzsa. We also further optimize Koulantzakis’ idea of interleaving sever...
This paper is devoted to the study of Sidon sets, Λ(p)-sets and some related notions for compact quantum groups. We establish several different characterizations of Sidon sets, and in particular prove that any Sidon set in a discrete group is a strong Sidon set in the sense of Picardello. We give several relations between Sidon sets, Λ(p)-sets and lacunarities for LFourier multipliers, generali...
Results on Sidon and Bh Sequences Sangjune Lee A set A of non-negative integers is a Sidon set if all the sums a1 + a2, with a1 ≤ a2 and a1, a2 ∈ A, are distinct. In this dissertation, we deal with results on the number of Sidon sets in [n] = {0, 1, · · · , n − 1} and the maximum size of Sidon sets in sparse random subsets of [n] or N (the set of natural numbers). We also consider a natural gen...
We study finite and infinite Sidon sets in N. The additive energy of two sets is used to obtain new upper bounds for the cardinalities of finite Sidon subsets of some sets as well as to provide short proofs of already known results. We also disprove a conjecture of Lindstrom on the largest Sidon set in [1, N ]× [1, N ] and relate it to a known conjecture of Vinogradov concerning the size of the...
(1) Bd(E) and B(E) are isometrically isomorphic for finite E ⊂ Γ. Bd(E) = `∞(E) characterizes I0 sets E and B(E) = `∞(E) characterizes Sidon sets E. [In general, Sidon sets are distinct from I0 sets. Within the group of integers Z, the set {2}n ⋃ {2+n}n is helsonian (hence Sidon) but not I0.] (2) Both are Fσ in 2 (as is also the class of finite unions of I0 sets). (3) There is an analogue for I...
There is a construction of random subsets of Z in which almost every subset is Sidon (this was first done by Katznelson). More is true: almost every subset is the finite union of quasi-independent sets. Also, if every Sidon subset of Z\{0} is the finite union of quasi-independent sets, then the required number of quasi-independent sets is bounded by a function of the Sidon constant. Analogs of ...
Let G be a compact abelian group and let T be the character group of G. Suppose £ is a subset of T. A trigonometric polynomial f on G is said to be an ^-polynomial if its Fourier transform / vanishes off E. The set E is said to be a Sidon set if there is a positive number B such that 2^xeb |/(X)| á-B||/||u for all E-polynomials /; here, ||/||„ = sup{ |/(x)| : xEG}. In this note we shall discuss...
A subset A of the set [n] = f1; 2; : : : ; ng, jAj = k, is said to form a Sidon (or Bh) sequence, h 2, if each of the sums a1 + a2 + : : : + ah; a1 a2 : : : ah; ai 2 A, are distinct. We investigate threshold phenomena for the Sidon property, showing that if An is a random subset of [n], then the probability that An is a Bh sequence tends to unity as n ! 1 if kn = jAnj n1=2h, and that P(An is Si...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید