نتایج جستجو برای: Thermophoresis phenomenon
تعداد نتایج: 158053 فیلتر نتایج به سال:
Negative thermophoresis is a phenomenon of particle transport induced by a temperature gradient, by which small particles migrate from low to high temperatures. In gas media, it depends strongly on the gas-particle interaction and temperature. In this paper, we show that negative thermophoresis is possible in the free molecular regime and a theoretical criterion is derived. On the basis of a ge...
The induced flow effect is the rotary motion generated in the fluid flow due to the temperature gradient. The phenomenon of thermophoresis is the movement of particles from the warmer side of the fluid to the cooler side. Laser is a very suitable device for creating a temperature gradient due to its unique features such as high power density, harmonic waves, single wavelength and very low diver...
Analysis has been done to investigate the heat generation/absorption effects in a steady flow of non-Newtonian nanofluid over a surface which is stretching linearly in its own plane. An upper convected Maxwell model (UCM) has been utilized as the non-Newtonian fluid model in view of the fact that it can predict relaxation time phenomenon which the Newtonian model cannot. Behavior of the relaxat...
This paper demonstrates the existence of self-thermophoresis, a phenomenon whereby a virtual thermophoretic force arising from a temperature gradient in a quiescent single-component liquid or gas acts upon an individual molecule of that fluid in much the same manner as a "real" thermophoretic force acts upon a macroscopic, non-Brownian body immersed in that same fluid. In turn, self-thermophore...
Enzymes have been recently found to exhibit enhanced diffusion due to their catalytic activities. A recent experiment [C. Riedel et al., Nature (London) 517, 227 (2015)] has found evidence that suggests this phenomenon might be controlled by the degree of exothermicity of the catalytic reaction involved. Four mechanisms that can lead to this effect, namely, self-thermophoresis, boost in kinetic...
We use a lattice Boltzmann based Brownian dynamics simulation to investigate the dependence of DNA thermophoresis on its interaction with dissolved salts. We find the thermal diffusion coefficient D{T} depends on the molecule size, in contrast with previous simulations without electrostatics. The measured S{T} also depends on the Debye length. This suggests thermophoresis of DNA is influenced b...
Small aerosols drift down a temperature or turbulence gradient since faster particles fly longer distances before equilibration. That fundamental phenomenon, called thermophoresis or turbophoresis, is widely encountered in nature and used in industry. It is universally believed that particles moving down the kinetic energy gradient must concentrate in minima (say, on walls in turbulence). Here,...
Thermophoresis of axially symmetric bodies is investigated to first order in the Knudsen-mimber, Kn. The study is made in the limit where the typical length of the immersed body is small compared to the mean free path. It is shown that in this case, in contrast to what is the case for spherical bodies, the arising thermal force on the body is not in general antiparallel to the temperature gradi...
Analysis has been conducted to present the generalized magnetic field effects on the flow of a Burgers' nanofluid over an inclined wall. Mathematical modelling for hydro-magnetics reveals that the term "[Formula: see text]" is for the Newtonian model whereas the generalized magnetic field term (as mentioned in Eq 4) is for the Burgers' model which is incorporated in the current analysis to get ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید