نتایج جستجو برای: Transition Metal Oxide Anode
تعداد نتایج: 601509 فیلتر نتایج به سال:
When testing the electrochemical performance of metal oxide anode for lithium-ion batteries (LIBs), binder played important role on the electrochemical performance. Which binder was more suitable for preparing transition metal oxides anodes of LIBs has not been systematically researched. Herein, five different binders such as polyvinylidene fluoride (PVDF) HSV900, PVDF 301F, PVDF Solvay5130, th...
Solid Oxide Fuel Cells (SOFC) offer electrochemically generated sources of electricity using oxygen ion transport at elevated temperatures. Analysis of materials used in SOFC using electron microscopy provides insights of foreseeable chemical reactions that govern the performance of the fuel cell. Materials used in SOFC can be divided into four categories; anode, cathode, electrolyte and interc...
A very simple and promising method to design the anode catalyst architecture for direct alcohol fuel cells by physically mixing Pt/C catalyst with transition-metal oxide nanoparticles is presented and electrochemical measurements confirm that this unique catalyst structure has excellent activity toward alcohol and CO electro-oxidation.
Molten oxide electrolysis (MOE) is the electrolytic decomposition of a metal oxide, most preferably into liquid metal and oxygen gas. The successful deployment of MOE hinges upon the existence of an inert anode capable of sustained oxygen evolution. Herein we report the results of a program of materials design, selection, and testing of candidate anode materials and demonstrate the utility of i...
The n-type transition metal oxides (TMO) consisting of molybdenum oxide (MoO(x)) and vanadium oxide (V(2)O(x)) are used as an efficient hole extraction layer (HEL) in heterojunction ZnO/PbS quantum dot solar cells (QDSC). A 4.4% NREL-certified device based on the MoO(x) HEL is reported with Al as the back contact material, representing a more than 65% efficiency improvement compared with the ca...
Anode materials play an important role in determining the performance of lithium ion batteries. In experiment, graphene (GR)/metal oxide (MO) composites possess excellent electrochemical properties and are promising anode materials. Here we perform density functional theory calculations to explore the interfacial interaction between GR and MO. Our result reveals generally weak physical interact...
Structural degradation and low conductivity of transition-metal oxides lead to severe capacity fading in lithium-ion batteries. Recent efforts to solve this issue have mainly focused on using nanocomposites or hybrids by integrating nanosized metal oxides with conducting additives. Here we design specific hierarchical structures and demonstrate their use in flexible, large-area anode assemblies...
Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensio...
Microbatteries are increasingly important for powering electronic systems, however, the volumetric energy density of microbatteries lags behind that of conventional format batteries. This paper reports a primary microbattery with energy density 45.5 mWh cm 2 mm 1 and peak power 5300 mW cm 2 mm 1, enabled by the integration of large volume fractions of high capacity anode and cathode chemistry i...
Thanks to their high energy density, light weight and long cycle life, rechargeable lithium ion batteries (LIBs) have become one of the dominant power sources for portable electronic devices. With the growing need for higher capacity and safety, numerous efforts have been made to develop alternative high-performance electrode materials for next-generation LIBs. As an example, the anode electrod...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید