نتایج جستجو برای: gaussian mixture model (gmm)

تعداد نتایج: 2220569  

2016
RENU SINGH ARVINd KUMAR SINGH

This paper presents a review of various speaker verification approaches in realistic world, and explore a combinational approach between Gaussian Mixture Model (GMM) and Support Vector Machine (SVM) as well as Gaussian Mixture Model (GMM) and Universal Background Model (UBM).

2016
Qian Zhang Taek Lyul Song

In this paper, an improved nonlinear Gaussian mixture probability hypothesis density (GM-PHD) filter is proposed to address bearings-only measurements in multi-target tracking. The proposed method, called the Gaussian mixture measurements-probability hypothesis density (GMM-PHD) filter, not only approximates the posterior intensity using a Gaussian mixture, but also models the likelihood functi...

2003
Stan Z. Li Dong Zhang Chengyuan Ma Harry Shum Eric Chang

The Gaussian mixture models (GMM) has proved to be an effective probabilistic model for speaker verification, and has been widely used in most of state-of-the-art systems. In this paper, we introduce a new method for the task: that using AdaBoost learning based on the GMM. The motivation is the following: While a GMM linearly combines a number of Gaussian models according to a set of mixing wei...

Journal: :Neurocomputing 2012
Jianfeng Shen Jiajun Bu Bin Ju Tao Jiang Hao Wu Lanjuan Li

Gaussian mixture model (GMM) has been widely used for data analysis in various domains including text documents, face images and genes. GMM can be viewed as a simple linear superposition of Gaussian components, each of which represents a data cluster. Recent models, namely Laplacian regularized GMM (LapGMM) and locally consistent GMM (LCGMM) have been proposed to preserve the than the original ...

2012
Mamta saraswat tiwari Piyush Lotia

In This paper presents an overview of a stateof-the-art text-independent speaker verification system. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. First, an introduction proposes a modular scheme of the training and test phases of a speaker verification system. Then, the most commonly speech parameterization use...

Journal: :Pattern Recognition 2005
Baibo Zhang Changshui Zhang Xing Yi

Gaussian Mixture Models (GMM) have been broadly applied for the fitting of probability density function. However, due to the intrinsic linearity of GMM, usually many components are needed to appropriately fit the data distribution, when there are curve manifolds in the data cloud. In order to solve this problem and represent data with curve manifolds better, in this paper we propose a new nonli...

2005
Luo Si Rong Jin

Mixture models, such as Gaussian Mixture Model, have been widely used in many applications for modeling data. Gaussian mixture model (GMM) assumes that data points are generated from a set of Gaussian models with the same set of mixture weights. A natural extension of GMM is the probabilistic latent semantic analysis (PLSA) model, which assigns different mixture weights for each data point. Thu...

Journal: :International Journal of Information Technology and Decision Making 2008
Yi Peng Gang Kou Yong Shi Zhengxin Chen

s of forty-nine regular papers from PAKDD 2005 [Ho et al. 2005], which were not used in the framework building process, were collected and analyzed to see if they fit in the categories identified by grounded theory. The abstract of each article was analyzed to identify the primary objective(s) the author(s) are addressing. Take the article “Adjusting Mixture Weights of Gaussian Mixture Model vi...

2013
Ling-Hui Chen Zhen-Hua Ling Yan Song Li-Rong Dai

This paper presents a new spectral modeling and conversion method for voice conversion. In contrast to the conventional Gaussian mixture model (GMM) based methods, we use restricted Boltzmann machines (RBMs) as probability density models to model the joint distributions of source and target spectral features. The Gaussian distribution in each mixture of GMM is replaced by an RBM, which can bett...

2010
Omid Dehzangi Bin Ma Chng Eng Siong Haizhou Li

Gaussian mixture modeling with universal background model (GMM-UBM) is a widely used method for speaker identification, where the GMM model is used to characterize a specific speaker’s voice. The estimation of model parameters is generally performed based on the maximum likelihood (ML) or maximum a posteriori (MAP) criteria. In this way, interspeaker information that discriminates between diffe...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید