نتایج جستجو برای: multi-objective optimization (MOO)

تعداد نتایج: 1244795  

2004
Yaochu Jin Bernhard Sendhoff

Dynamic optimization using evolutionary algorithms is receiving increasing interests. However, typical test functions for comparing the performance of various dynamic optimization algorithms still lack. This paper suggests a method for constructing dynamic optimization test problems using multi-objective optimization (MOO) concepts. By aggregating different objectives of an MOO problem and chan...

Journal: :transactions on combinatorics 2013
soniya lalwani sorabh singhal rajesh kumar nilama gupta

numerous problems encountered in real life cannot be actually formulated as a single objective problem; hence the requirement of multi-objective optimization (moo) had arisen several years ago. due to the complexities in such type of problems powerful heuristic techniques were needed, which has been strongly satisfied by swarm intelligence (si) techniques. particle swarm optimization (pso) has ...

2016
Lim Kian Sheng Zuwairie Ibrahim Salinda Buyamin Anita Ahmad Mohd Zaidi Mohd Tumari Mohd Falfazli Mat Jusof

Multi Objective Optimization (MOO) problem involves simultaneous minimization or maximization of many objective functions. Various MOO algorithms have been introduced to solve the MOO problem. Traditional gradient-based techniques are one of the methods used to solve MOO problems. However, in the traditional gradient-based technique only one solution is generated. Thus, an alternative approach ...

2016
Shivom Sharma Gade Pandu Rangaiah François Maréchal

This chapter presents three MS Excel programs, namely, EMOO (Excel based Multi-Objective Optimization), NDS (Non-Dominated Sorting) and PM (Performance Metrics) useful for Multi-Objective Optimization (MOO) studies. The EMOO program is for finding non-dominated solutions of a given MOO problem. It has both binary-coded and realcoded NSGA-II (Elitist Non-Dominated Sorting Genetic Algorithm), and...

Journal: :American Journal of Operations Research 2019

Abstract In this paper, multi-objective optimization (MOO) of Al2O3-water nanofluid flow in microchannel heat sinks (MCHS) with triangular ribs is performed using Computational Fluid Dynamics (CFD) techniques and Non-dominated Sorting Genetic Algorithms (NSGA II). At first, nanofluid flow is solved numerically in various MCHS with triangular ribs using CFD techniques. Finally, the CFD data will...

2014
Julien Martin Jean-Pierre Georgé Marie-Pierre Gleizes Mickaël Meunier

Multidisciplinary Design Optimization (MDO) problems can have a unique objective or be multi-objective. In this paper, we are interested in MDO problems having at least two conflicting objectives. This characteristic ensures the existence of a set of compromise solutions called Pareto front. We treat those MDO problems like Multi-Objective Optimization (MOO) problems. Actual MOO methods suffer ...

2010
Antony Waldock David W. Corne

We describe and evaluate a multi-objective optimisation (MOO) algorithm that works within the Probability Collectives (PC) optimisation framework. PC is an alternative approach to optimization where the optimization process focusses on finding an ideal distribution over the solution space rather than an ideal solution. We describe one way in which MOO can be done in the PC framework, via using ...

2003
Yaochu Jin Bernhard Sendhoff

Local search techniques have proved to be very efficient in evolutionary multi-objective optimization(MOO). However, the reasons behind the success of local search in MOO have not yet been well discussed. This paper attempts to investigate empirically the main factors that may have contributed significantly to the success of local search in MOO. It is found that for many widely used test proble...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید