نتایج جستجو برای: neoseiulus barkeri

تعداد نتایج: 609  

Journal: :Applied and environmental microbiology 2001
S Shima M Sordel-Klippert A Brioukhanov A Netrusov D Linder R K Thauer

Recently it was reported that methanogens of the genus Methanobrevibacter exhibit catalase activity. This was surprising, since Methanobrevibacter species belong to the order Methanobacteriales, which are known not to contain cytochromes and to lack the ability to synthesize heme. We report here that Methanobrevibacter arboriphilus strains AZ and DH1 contained catalase activity only when the gr...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2008
Ashley G Smart Luis A N Amaral Julio M Ottino

We investigate the relationship between structure and robustness in the metabolic networks of Escherichia coli, Methanosarcina barkeri, Staphylococcus aureus, and Saccharomyces cerevisiae, using a cascading failure model based on a topological flux balance criterion. We find that, compared to appropriate null models, the metabolic networks are exceptionally robust. Furthermore, by decomposing e...

Journal: :Applied and environmental microbiology 1988
A L Lobo S H Zinder

Nitrogen fixation (diazotrophy) has recently been demonstrated in several methanogenic archaebacteria. To compare the process in an archaebacterium with that in eubacteria, we examined the properties of diazotrophic growth and nitrogenase activity in Methanosarcina barkeri 227. Growth yields with methanol or acetate as a growth substrate were significantly lower in N(2)-grown cultures than in N...

2015
Yifeng Wei Bin Li Divya Prakash James G. Ferry Sean J. Elliott JoAnne Stubbe

Two subtypes of class III anaerobic ribonucleotide reductases (RNRs) studied so far couple the reduction of ribonucleotides to the oxidation of formate, or the oxidation of NADPH via thioredoxin and thioredoxin reductase. Certain methanogenic archaea contain a phylogenetically distinct third subtype of class III RNR, with distinct active-site residues. Here we report the cloning and recombinant...

Journal: :Journal of bacteriology 1984
L Baresi

Cell lysates of acetate-grown Methanosarcina barkeri 227 were found to cleave acetate to CH4 and CO2. The aceticlastic reaction was identified by using radioactive methyl-labeled acetate. Cell lysates decarboxylated acetate in a nitrogen atmosphere, conserving the methyl group in methane. The rate of methanogenesis from acetate in the cell lysates was comparable to that observed with whole cell...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید