نتایج جستجو برای: nonsense mediated mrna decay

تعداد نتایج: 610089  

Journal: :Molecular pharmacology 2005
Florent Busi Thierry Cresteil

The total CYP3A5 mRNA level is significantly greater in carriers of the CYP3A5*1 allele than in CYP3A5*3 homozygotes. Most of the CYP3A5*3 mRNA includes an intronic sequence (exon 3B) containing premature termination codons (PTCs) between exons 3 and 4. Two models were used to investigate the degradation of CYP3A5 mRNA: a CYP3A5 minigene consisting of CYP3A5 exons and introns 3 to 6 transfected...

Journal: :The EMBO journal 1997
J Zhang L E Maquat

Nonsense codons upstream of and including position 192 of the human gene for triosephosphate isomerase (TPI) have been found to reduce the abundance of TPI mRNA to approximately 25% of normal. The reduction is due to the decay of newly synthesized TPI mRNA that co-purifies with nuclei. TPI mRNA that co-purifies with cytoplasm is immune to nonsense-mediated decay. Until now, a nonsense codon at ...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2005
Marenda A Wilson Stacie Meaux Roy Parker Ambro van Hoof

Yeast strains can reversibly interconvert between [PSI+] and [psi-] states. The [PSI+] state is caused by a prion form of the translation termination factor eRF3. The [PSI+] state causes read-through at stop codons and can lead to phenotypic variation, although the molecular mechanisms causing those phenotypic changes remain unknown. We identify an interaction between [PSI+]-induced phenotypic ...

2013
Jungwook Hwang Yoon Ki Kim

In mammalian cells, aberrant transcripts harboring a premature termination codon (PTC) can be generated by abnormal or inefficient biogenesis of mRNAs or by somatic mutation. Truncated polypeptides synthesized from these aberrant transcripts could be toxic to normal cellular functions. However, mammalian cells have evolved sophisticated mechanisms for monitoring the quality of mRNAs. The faulty...

Journal: :Molecular and cellular biology 2001
A T Bond D A Mangus F He A Jacobson

Dbp2p, a member of the large family of DEAD-box proteins and a yeast homolog of human p68, was shown to interact with Upf1p, an essential component of the nonsense-mediated mRNA decay pathway. Dbp2p:Upf1p interaction occurs within a large conserved region in the middle of Upf1p that is largely distinct from its Nmd2p and Sup35/45p interaction domains. Deletion of DBP2, or point mutations within...

Journal: :Biochemical Society transactions 2008
Saverio Brogna Preethi Ramanathan Jikai Wen

NMD (nonsense-mediated mRNA decay) is a mechanism that degrades transcripts containing PTCs (premature translation termination codons). NMD is a translation-associated process that is expected to take place throughout the cytoplasm. However, recent studies have indicated that the core NMD factors UPF1 (up-frameshift-1), UPF2 and UPF3 can associate with P-bodies (processing bodies), which are la...

Journal: :Molecular cell 2008
Hanae Sato Nao Hosoda Lynne E Maquat

In mammalian cells, nonsense-mediated mRNA decay (NMD) is a consequence of nonsense codon recognition during a pioneer round of translation. This round can occur largely before or largely after the release of newly synthesized mRNA from nuclei, depending on the mRNA, and likely utilizes cytoplasmic ribosomes. We show that increasing the cellular concentration of the splicing factor SF2/ASF augm...

Journal: :The EMBO journal 2007
Zhihong Cheng Denise Muhlrad Meng Kiat Lim Roy Parker Haiwei Song

Nonsense-mediated mRNA decay (NMD) is an mRNA surveillance pathway that recognizes and degrades aberrant mRNAs containing premature stop codons. A critical protein in NMD is Upf1p, which belongs to the helicase super family 1 (SF1), and is thought to utilize the energy of ATP hydrolysis to promote transitions in the structure of RNA or RNA-protein complexes. The crystal structure of the catalyt...

Journal: :Nucleic acids research 2003
Heather L Heikkinen Sara A Llewellyn Christine A Barnes

The degradation of mRNA in the yeast Saccharomyces cerevisiae takes place through several related pathways. In the most general mRNA-decay pathway, that of poly(A)-dependent decay, the normal shortening of the poly(A) tail on an mRNA molecule by deadenylation triggers mRNA decapping by the enzyme Dcp1p, followed by exonucleolytic digestion by Xrn1p. A specialized mRNA-decay pathway, termed nons...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید