نتایج جستجو برای: npq (non photochemical quenching)

تعداد نتایج: 1338810  

In order to evaluate the effects of both cold and light stresses on chlorophyll fluorescence and feasibility of using chlorophyll florescence technique to evaluate effect of light intensity on cold tolerance in soybean, an experiment was done in a factorial arrangement based on a completely randomized design with three replicates. Two soybean cultivars consisted of 032 and BP grown under greenh...

Journal: :Remote Sensing 2017
Luis Alonso Shari Van Wittenberghe Julia Amorós-López Joan Vila-Francés Luis Gómez-Chova José F. Moreno

In order to estimate vegetation photosynthesis from remote sensing observations; some critical parameters need to be quantified. From all absorbed light; the plant needs to release any excess that is not used for photosynthesis; by non-photochemical quenching; by fluorescence emission and unregulated thermal dissipation. Non-photochemical quenching (NPQ) processes are controlled photoprotective...

Journal: :Biochemical Society transactions 2005
A Dreuw G R Fleming M Head-Gordon

NPQ (non-photochemical quenching) is a fundamental photosynthetic mechanism by which plants protect themselves against excess excitation energy and the resulting photodamage. A discussed molecular mechanism of the so-called feedback de-excitation component (qE) of NPQ involves the formation of a quenching complex. Recently, we have studied the influence of formation of a zeaxanthin-chlorophyll ...

2012
Radek Kaňa Eva Kotabová Roman Sobotka Ondřej Prášil

Photosynthesis uses light as a source of energy but its excess can result in production of harmful oxygen radicals. To avoid any resulting damage, phototrophic organisms can employ a process known as non-photochemical quenching (NPQ), where excess light energy is safely dissipated as heat. The mechanism(s) of NPQ vary among different phototrophs. Here, we describe a new type of NPQ in the organ...

Journal: :Plant & cell physiology 2006
Johann Lavaud Peter G Kroth

In diatoms, the non-photochemical fluorescence quenching (NPQ) regulates photosynthesis during light fluctuations. NPQ is associated with an enzymatic xanthophyll cycle (XC) which is controlled by the light-driven transthylakoid proton gradient (delta pH). In this report, special illumination conditions and chemicals were used to perturb the kinetics of the delta pH build-up, of the XC and of N...

Journal: :Remote Sensing 2017
Shuren Chou Jing M. Chen Hua Yu Bin Chen Xiuying Zhang Holly Croft Shoaib Khalid Meng Li Qin Shi

In this study, we evaluated the effectiveness of photochemical reflectance index (PRI) and non-photochemical quenching (NPQ) for assessing water stress in maize for the purpose of developing remote sensing techniques for monitoring water deficits in crops. Leaf-level chlorophyll fluorescence and canopy-level PRI were measured concurrently over a maize field with five different irrigation treatm...

Journal: :Philosophical transactions of the Royal Society of London. Series B, Biological sciences 2000
I Baroli K K Niyogi

The involvement of excited and highly reactive intermediates in oxygenic photosynthesis inevitably results in the generation of reactive oxygen species. To protect the photosynthetic apparatus from oxidative damage, xanthophyll pigments are involved in the quenching of excited chlorophyll and reactive oxygen species, namely 1Chl*, 3Chl*, and 1O2*. Quenching of 1Chl* results in harmless dissipat...

2015
Maxwell A. Ware Erica Belgio Alexander V. Ruban

The efficiency of protective energy dissipation by non-photochemical quenching (NPQ) in photosystem II (PSII) has been recently quantified by a new non-invasive photochemical quenching parameter, qPd. PSII yield (ФPSII) was expressed in terms of NPQ, and the extent of damage to the reaction centres (RCIIs) was calculated via qPd as: ФPSII=qPd×(F v/F m)/{1+[1-(F v/F m)]×NPQ}. Here this approach ...

2015
Pengqi Xu Lijin Tian Miroslav Kloz Roberta Croce

Photosynthetic organisms protect themselves from high-light stress by dissipating excess absorbed energy as heat in a process called non-photochemical quenching (NPQ). Zeaxanthin is essential for the full development of NPQ, but its role remains debated. The main discussion revolves around two points: where does zeaxanthin bind and does it quench? To answer these questions we have followed the ...

Journal: :Journal of photochemistry and photobiology. B, Biology 2011
Ernesto Garcia-Mendoza Hector Ocampo-Alvarez Govindjee

The dissipation of energy as heat is essential for photosynthetic organisms to protect themselves against excess light. We compared Photosystem II florescence changes (non-photochemical quenching, NPQ) in the brown alga Macrocystis pyrifera with that of Ficus sp., a higher plant to examine if the mechanism of heat dissipation (energy-dependent quenching, qE) differs between these evolutionary d...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید