نتایج جستجو برای: reynolds number

تعداد نتایج: 1174722  

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2002
Eugene Balkovsky Boris I. Shraiman

Locating the source of odor in a turbulent environment-a common behavior for living organisms-is nontrivial because of the random nature of mixing. Here we analyze the statistical physics aspects of the problem and propose an efficient strategy for olfactory search that can work in turbulent plumes. The algorithm combines the maximum likelihood inference of the source position with an active se...

Journal: :Proceedings of the National Academy of Sciences of the United States of America 2012
Amin Doostmohammadi Roman Stocker Arezoo M Ardekani

Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compar...

Journal: :Physical review. E, Statistical, nonlinear, and soft matter physics 2010
Piero Olla

The possibility of microscopic swimming by extraction of energy from an external flow is discussed, focusing on the migration of a simple trimer across a linear shear flow. The geometric properties of swimming, together with the possible generalization to the case of a vesicle, are analyzed. The mechanism of energy extraction from the flow appears to be the generalization to a discrete swimmer ...

Journal: :Physical review letters 2004
Fernando L Ponta Hassan Aref

A rationale for the empirically observed Strouhal-Reynolds number relation for vortex shedding in the wake of a cylinder is provided. This rationale derives from a mechanism of vortex formation observed in numerical simulations of two-dimensional vortex shedding coupled with an order of magnitude estimate of the terms in the vorticity transport equation based on this mechanism.

Journal: :The European physical journal. E, Soft matter 2012
R Ledesma-Aguilar H Löwen J M Yeomans

Swimming in circles occurs in a variety of situations at low Reynolds number. Here we propose a simple model for a swimmer that undergoes circular motion, generalising the model of a linear swimmer proposed by Najafi and Golestanian (Phys. Rev. E 69, 062901 (2004)). Our model consists of three solid spheres arranged in a triangular configuration, joined by two links of time-dependent length. Fo...

Journal: :The Journal of chemical physics 2007
David J Earl C M Pooley J F Ryder Irene Bredberg J M Yeomans

The authors employ three numerical methods to explore the motion of low Reynolds number swimmers, modeling the hydrodynamic interactions by means of the Oseen tensor approximation, lattice Boltzmann simulations, and multiparticle collision dynamics. By applying the methods to a three bead linear swimmer, for which exact results are known, the authors are able to compare and assess the effective...

2007
Jörg Schumacher Katepalli R Sreenivasan Victor Yakhot

The high-order statistics of fluctuations in velocity gradients in the crossover range from the inertial to the Kolmogorov and sub-Kolmogorov scales are studied by direct numerical simulations (DNS) of homogeneous isotropic turbulence with vastly improved resolution. The derivative moments for orders 0 ≤ n ≤ 8 are represented well as powers of the Reynolds number, Re, in the range 380 ≤ Re ≤ 22...

2016
Qi Zhou Peter Diamessis

We report large-eddy simulations of the turbulent wake of a towed-sphere of diameter D at speed U in a linearly stratified Boussinesq fluid with buoyancy frequency N . These simulations are performed using a spectral-multidomain-penalty-method-based incompressible Navier-Stokes solver for Re ≡ UD/ν ∈ {5 × 10, 10, 4 × 10} and Fr ≡ 2U/(ND) ∈ {4, 16, 64}. Increasingly richer turbulent fine structu...

2009
Ivan Marusic Nicholas Hutchins

A review of recent discoveries from high Reynolds number studies of turbulent boundary layers is given. The emergent regime of very large-scale structures in the logarithmic region and their subsequent influence on the near-wall cycle challenges many of the previously held assumptions regarding scaling of turbulent boundary layers at high Reynolds numbers. Experimental results are presented to ...

2006
Paul F. Fischer Francis Loth Seung E. Lee Sang-Wook Lee David S. Smith Hisham S. Bassiouny

While much of the hemodynamics in a healthy human body has low Reynolds number, resulting in laminar flow, relatively high Reynolds number flow is observed at some specific locations, which can cause transition to turbulence. (The term “turbulence” refers to the motion of a fluid having local velocities and pressures that fluctuate randomly.) For example, the peak Reynolds number in the human a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید