نتایج جستجو برای: riemannian metric‎

تعداد نتایج: 89619  

In this paper, we extend Sasaki metric for tangent bundle of a Riemannian manifold and Sasaki-Mok metric for the frame bundle of a Riemannian manifold [I] to the case of a semi-Riemannian vector bundle over a semi- Riemannian manifold. In fact, if E is a semi-Riemannian vector bundle over a semi-Riemannian manifold M, then by using an arbitrary (linear) connection on E, we can make E, as a...

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1394

for a given riemannian manifold (m,g),it is an interesting question to study the existence of a conformal diffemorphism (also called as a conformal transformation) f : m ! m such that the metric g? = fg has one of the following properties: (i)(m; g?) has constant scalar curvature. (ii)(m; g?) is an einstein manifold.

‎The notion of quasi-Einstein metric in physics is equivalent to the notion of Ricci soliton in Riemannian spaces‎. ‎Quasi-Einstein metrics serve also as solution to the Ricci flow equation‎. ‎Here‎, ‎the Riemannian metric is replaced by a Hessian matrix derived from a Finsler structure and a quasi-Einstein Finsler metric is defined‎. ‎In compact case‎, ‎it is proved that the quasi-Einstein met...

We consider the unit tangent sphere bundle of Riemannian manifold ( M, g ) with g-natural metric G̃ and we equip it to an almost contact B-metric structure. Considering this structure, we show that there is a direct correlation between the Riemannian curvature tensor of ( M, g ) and local symmetry property of G̃. More precisely, we prove that the flatness of metric g is necessary and sufficien...

Journal: :iranian journal of science and technology (sciences) 2011
b. rezaei

in this paper, the matsumoto metric with special ricci tensor has been investigated. it is proved that, if  is ofpositive (negative) sectional curvature and f is of  -parallel ricci curvature with constant killing 1-form ,then (m,f) is a riemannian einstein space. in fact, we generalize the riemannian result established by akbar-zadeh.

Journal: :international journal of nonlinear analysis and applications 2015
mahmood parchetalab

we classify the paracontact riemannian manifolds that their rieman-nian curvature satisfies in the certain condition and we show that thisclassification is hold for the special cases semi-symmetric and locally sym-metric spaces. finally we study paracontact riemannian manifolds satis-fying r(x, ξ).s = 0, where s is the ricci tensor.

Journal: :bulletin of the iranian mathematical society 2014
b. bidabad m. yarahmadi

‎the notion of quasi-einstein metric in physics is equivalent to the notion of ricci soliton in riemannian spaces‎. ‎quasi-einstein metrics serve also as solution to the ricci flow equation‎. ‎here‎, ‎the riemannian metric is replaced by a hessian matrix derived from a finsler structure and a quasi-einstein finsler metric is defined‎. ‎in compact case‎, ‎it is proved that the quasi-einstein met...

Journal: :iranian journal of science and technology (sciences) 2005
b. najafi

the general relatively isotropic mean landsberg metrics contain the general relativelyisotropic landsberg metrics. a class of finsler metrics is given, in which the mentioned two conceptsare equivalent. in this paper, an interpretation of general relatively isotropic mean landsberg metrics isfound by using c-conformal transformations. some necessary conditions for a general relativelyisotropic ...

Journal: :bulletin of the iranian mathematical society 2012
abolghasem laleh morteza mir mohamad rezaii fateme ahangari

the geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on tm. the metrizability of a given semispray is of special importance. in this paper, the metric associated with the semispray s is applied in order to study some types of foliations on the tangent bundle which are compatible with sode structure. indeed, suff...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید