نتایج جستجو برای: strongly right $AB$ ring

تعداد نتایج: 647817  

This article examines annihilators in the skew polynomial ring $R[x;alpha,delta]$. A ring is strongly right $AB$ if everynon-zero right annihilator is bounded. In this paper, we introduce and investigate a particular class of McCoy rings which satisfy Property ($A$) and the conditions asked by P.P. Nielsen. We assume that $R$ is an ($alpha$,$delta$)-compatible ring, and prove that, if $R$ is ni...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شیراز 1379

‏‎for the first time nakayama introduced qf-ring. in 1967 carl. faith and elbert a. walker showed that r is qf-ring if and only if each injective right r-module is projective if and only if each injective left r-modules is projective. in 1987 s.k.jain and s.r.lopez-permouth proved that every ring homomorphic images of r has the property that each cyclic s-module is essentialy embeddable in dire...

We introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. We firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. We next argue about the strong$alpha$-reversibility of some kinds of extensions. A number ofproperties of this version are established. It is shown ...

Journal: :bulletin of the iranian mathematical society 0
y. alagöz i̇zmir institute of technology‎, ‎department‎ ‎of mathematics‎, ‎35430‎, i̇zmir, turkey. y. durğun bitlis eren university‎, ‎department of mathematics‎, ‎13000‎, bitlis, ‎turkey.

an r-module m is called strongly noncosingular if it has no nonzero rad-small (cosingular) homomorphic image in the sense of harada. it is proven that (1) an r-module m is strongly noncosingular if and only if m is coatomic and noncosingular; (2) a right perfect ring r is artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

An R-module M is called strongly noncosingular if it has no nonzero Rad-small (cosingular) homomorphic image in the sense of Harada. It is proven that (1) an R-module M is strongly noncosingular if and only if M is coatomic and noncosingular; (2) a right perfect ring R is Artinian hereditary serial if and only if the class of injective modules coincides with the class of (strongly) noncosingula...

Journal: :bulletin of the iranian mathematical society 2012
l. zhao x. zhu

we introduce the notion ofstrongly $alpha$-reversible rings which is a strong version of$alpha$-reversible rings, and investigate its properties. we firstgive an example to show that strongly reversible rings need not bestrongly $alpha$-reversible. we next argue about the strong$alpha$-reversibility of some kinds of extensions. a number ofproperties of this version are established. it is shown ...

Journal: :bulletin of the iranian mathematical society 2013
h. chen

a ring $r$ is a strongly clean ring if every element in $r$ is the sum of an idempotent and a unit that commutate. we construct some classes of strongly clean rings which have stable range one. it is shown that such cleanness of $2 imes 2$ matrices over commutative local rings is completely determined in terms of solvability of quadratic equations.

C. A. K. Ahmed R. T. M. Salim,

Cohn called a ring $R$ is reversible if whenever $ab = 0,$ then $ba = 0$ for $a,bin R.$ The reversible property is an important role in noncommutative ring theory‎. ‎Recently‎, ‎Abdul-Jabbar et al‎. ‎studied the reversible ring property on nilpotent elements‎, ‎introducing‎ the concept of commutativity of nilpotent elements at zero (simply‎, ‎a CNZ ring)‎. ‎In this paper‎, ‎we extend the CNZ pr...

A module M is called epi-retractable if every submodule of M is a homomorphic image of M. Dually, a module M is called co-epi-retractable if it contains a copy of each of its factor modules. In special case, a ring R is called co-pli (resp. co-pri) if RR (resp. RR) is co-epi-retractable. It is proved that if R is a left principal right duo ring, then every left ideal of R is an epi-retractable ...

Journal: :bulletin of the iranian mathematical society 2013
h. mostafanasab

a module m is called epi-retractable if every submodule of m is a homomorphic image of m. dually, a module m is called co-epi-retractable if it contains a copy of each of its factor modules. in special case, a ring r is called co-pli (resp. co-pri) if rr (resp. rr) is co-epi-retractable. it is proved that if r is a left principal right duo ring, then every left ideal of r is an epi-retractable ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید