نتایج جستجو برای: tuple total restrained domination number
تعداد نتایج: 1842615 فیلتر نتایج به سال:
For any integer $kgeq 1$, a set $S$ of vertices in a graph $G=(V,E)$ is a $k$-tuple total dominating set of $G$ if any vertex of $G$ is adjacent to at least $k$ vertices in $S$, and any vertex of $V-S$ is adjacent to at least $k$ vertices in $V-S$. The minimum number of vertices of such a set in $G$ we call the $k$-tuple total restrained domination number of $G$. The maximum num...
for any integer $kgeq 1$, a set $s$ of vertices in a graph $g=(v,e)$ is a $k$-tuple total dominating set of $g$ if any vertex of $g$ is adjacent to at least $k$ vertices in $s$, and any vertex of $v-s$ is adjacent to at least $k$ vertices in $v-s$. the minimum number of vertices of such a set in $g$ we call the $k$-tuple total restrained domination number of $g$. the maximum num...
Domination is a rapidly developing area of research in graph theory, and its various applications to ad hoc networks, distributed computing, social networks and web graphs partly explain the increased interest. This thesis focuses on domination theory, and the main aim of the study is to apply a probabilistic approach to obtain new upper bounds for various domination parameters. Chapters 2 and ...
let $k$ be a positive integer. a subset $s$ of $v(g)$ in a graph $g$ is a $k$-tuple total dominating set of $g$ if every vertex of $g$ has at least $k$ neighbors in $s$. the $k$-tuple total domination number $gamma _{times k,t}(g)$ of $g$ is the minimum cardinality of a $k$-tuple total dominating set of $g$. if$v(g)=v^{0}={v_{1}^{0},v_{2}^{0},ldots ,v_{n}^{0}}$ and $e(g)=e_{0}$, then for any in...
In this paper, we present new upper bounds for the global domination and Roman domination numbers and also prove that these results are asymptotically best possible. Moreover, we give upper bounds for the restrained domination and total restrained domination numbers for large classes of graphs, and show that, for almost all graphs, the restrained domination number is equal to the domination num...
For every positive integer k, a set S of vertices in a graph G = (V;E) is a k- tuple dominating set of G if every vertex of V -S is adjacent to at least k vertices and every vertex of S is adjacent to at least k - 1 vertices in S. The minimum cardinality of a k-tuple dominating set of G is the k-tuple domination number of G. When k = 1, a k-tuple domination number is the well-studied domination...
for every positive integer k, a set s of vertices in a graph g = (v;e) is a k- tuple dominating set of g if every vertex of v -s is adjacent to at least k vertices and every vertex of s is adjacent to at least k - 1 vertices in s. the minimum cardinality of a k-tuple dominating set of g is the k-tuple domination number of g. when k = 1, a k-tuple domination number is the well-studied domination...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید