نام پژوهشگر: زبیده مومنی لاریمی

ساخت و بررسی خواص فیزیکی نانوفریت nife2-xgaxo4
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم 1391
  سعیده اقبالی فریز   احمد امیرابادیزاده

در این کار پژوهشی نانوذرات nife2-xgaxo4 به ازای x های 0، 1/0 و 3/0 به روش سل – ژل ساخته شد و اثر جانشانی گالیم بر خواص ساختاری و مغناطیسی این نانوذرات مورد بررسی قرار گرفت. به منظور شناسایی ذرات حاصل، از طیف اشعه x و برای بررسی ویژگی های مغناطیسی آنها از دستگاه مغناطیس سنج با نمونه نوسانی vsm استفاده گردید. آنالیز ساختاری نمونه ها توسط الگوی پراش پرتو x نشان می دهد ساختار حاصل، اسپینلی معکوس و دارای شبکه مکعبی است. میانگین اندازه بلورک ها و همچنین ثابت شبکه، به دلیل جایگزینی یونهای گالیم با شعاع یونی کوچکتر ( 62/0) با یون های آهن با شعاع یونی 64/0 کاهش می یابد. بررسی ویژگی های مغناطیسی نمونه ها نیز افزایش مغناطش اشباع و پسماند، متناسب با افزایش آلایش گالیم را نشان می دهد، زیرا یونهای گالیم در محدوده آزمایش (3/0x ) ترجیح می دهند در جایگاه a قرار گیرند. با افزایش جانشانی یونهای ga3+ به جای یونهای fe3+ در جایگاه (a)، یونهای fe3+ به جایگاه (b) انتقال می یابد و در نتیجه مغناطش اشباع و پسماند نیز افزایش می یابد.

بررسی نسبت انرژی گرمایی- مغناطیسی در آلیاژهای کپه ای r5sixge4-x
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم 1393
  زبیده مومنی لاریمی   احمد یزدانی

در این کار، ما ساختار الکترونی و خواص مغناطیسی آلیاژی gd5(sixge1-x)4 به ازای 1، 5/0، 0=x را با روش تابع موج تخت تقویت شده ی خطی با پتانسیل کامل برپایه ی نظریه تابعی چگالی با استفاده از کد محاسباتی wien2k مطالعه کرده ایم. از آنجاییکه اوربیتال های f4 نسبتاً جایگزیده هستند، پیش بینی می شود که همبستگی الکترون های f4 قوی است در نتیجه تقریب چگالی اسپینی موضعی تصحیح شده ی کولمبی (lsda+u) دربردارنده ی برهمکنش کولمبی روی جایگاهی برای توصیف این دستگاه ها انتخاب شده است. ما حجم تعادلی سلول واحد را در حالت های فرومغناطیس و پارامغناطیس برای ترکیب gd5si4 محاسبه کرده ایم. برپایه ی نتایج محاسبه شده، حالت پایه ترکیب gd5si4 در حالت فرومغناطیس یافت شد. انرژی کل حجم های سلول واحد تعادلی برای ترکیب gd5ge4 حالت فرومغناطیس gd5si4–گونه راستگوشی و برای sm5ge4–گونه راست گوشی در حالت های فرومغناطیس و پادفرومغناطیس مقایسه شدند. ما تایید کردیم که ساختار بلوری حالت پایه gd5ge4 ساختار راست گوشی sm5ge4–گونه است. اگرچه، انرژی کل برای حالت فرومغناطیس sm5ge4–گونه کمتر از حالت پادفرومغناطیس آن است. همچنین این محاسبات برای ترکیب gd5si2ge2 با ساختارهای راستگوشی gd5si4–گونه (?) و تک میلی gd5si2ge2–گونه (?) در حالت فرومغناطیس انجام شد. ما ساختار راستگوشی gd5si4–گونه را در انرژی کل کمتر از ساختار تک میلی gd5si2ge2–گونه یافتیم. این روش برای ارزیابی ساختار بلوری حالت پایه ی این ترکیبات نیز موفق بوده است. پارامترهای ساختاری بهینه و خواص مغناطیسی شامل ثابت های شبکه و گشتاورهای مغناطیسی محاسبه شده برای این ترکیب در ساختارهای بلوری مختلف در توافق خوبی با داده های تجربی هستند. آنالیز خواص الکترونی توسط محاسبه ی ساختارهای نواری و چگالی حالت های الکترونی (جزئی و کلی) حاصل شد. نتایج dos نشان داد که خواص مغناطیسی این ترکیبات به هیبریدشدگی بین حالت های p4/p3si/ge- و d5-gd وابسته است. هیبریدشدگی بین حالت های p4/p3si/ge- و حالت های هدایت d5-gd که به قطبش اسپینی در اتم های si/ge منجر می شود؛ برهمکنش فرومغناطیسی بلند-برد رادرمن-کیتل-کاسویا-یاشودا (rkky) بین گشتاورهای f4-gd در تیغه های gd مجاور که توسط پیوندهای ge(si) مرتبط هستند را فراهم می کند. گشتاورهای مغناطیسی اتم های gd در این ترکیبات کوچکتر از گادولینیوم عنصری هستند. وجود نوارهای خیلی هموار در حدود ev 7- برای اسپین بالا و در حدود ev 3+ برای اسپین پایین که اساساً مشخصه ی f4-gd هستند نشان می دهد که روش lsda+u توصیف بهتری از این دستگاه ها فراهم می کند. مشخصات پیوند توسط محاسبه ی کانتورهای چگالی بار و تفاوت چگالی بار در ساختارهای gd5si4–گونه، sm5ge4–گونه و gd5si2ge2–گونه برای این سه ترکیب مطالعه شد. همپوشانی واضح چگالی الکترونی بین 1gd و اتم های si/ge درون تیغه ای، پیوند شبه-کووالانسی بین آنها را در همه ی این ساختارها نشان می دهد. تجمع چگالی بار بین اتم های si/ge بین تیغه ای نشان دهنده ی پیوندهای شبه-کووالانسی بین آنها در ساختار gd5si4–گونه مشاهده شده است، در حالیکه در ساختار gd5si2ge2–گونه فقط نیمی از پیوندهای شبه-کووالانسی بین تیغه ها حفظ می شود و در ساختار چنین هم پوشانی هایی بین اتم های ge (بین تیغه ای) غایب است. سرانجام در بخش تجربی، ما آلیاژ gd5si4 را با آلیاژسازی مکانیکی تحت اتمسفر گاز آرگون و سپس ذوب نمونه توسط کوره قوس الکتریکی سنتز کرده ایم. ساختار و خواص مغناطیسی آلیاژ با کمک پراش اشعه x و اندازه گیری مغناطش بررسی شده است. این ترکیب در ساختار راست گوشی با گروه فضایی pnma متبلور شد. در الگوی پراش اشعه x، فاز جزئی gdsi2 به عنوان فاز ثانویه مشاهده شد. برای این ترکیب گذار فاز مرتبه دوم مشاهده شد. بیشینه ی تغییر آنتروپی مغناطیسی همدمای ترکیب gd5si4 در k348 یافت شد که دارای مقدار تقریباً j/kg k 10- در میدان اعمالی t5/0 می-باشد. بعلاوه اثر جانشینی منیزیم روی تشکیل فاز، دمای کوری و تغییر آنتروپی مغناطیسی ترکیب gd5si2ge2 بررسی شده است. نمونه آلاییده ی منیزیم gd5si2-xge2-xmg2x با 05/0=x2 توسط ذوب القایی سریع تهیه شده است. نتایج تجربی نشان داد که این مقدار کم آلایش mg در ترکیب gd5si2ge2 گذار مغناطیسی-ساختاری مرتبه اول را حفظ می-کند، بطور قابل توجهی اثرات گرمامغناطیسی آن را افزایش می دهد و همچنین دمای کوری tc آنرا افزایش می دهد. تغییر آنتروپی مغناطیسی بیشینه در تغییر میدان مغناطیسی t5/0-0 تقریباً j/kg k 20 در k275 برای این نمونه برآورد شده است که از ترکیب خالص gd5si2ge2 بزرگتر است. کلمات کلیدی: ترکیبات gd5(sixge1-x)4، محاسبات تابعی چگالی، ساختار الکترونی، برهمکنش تبادلی، خواص گرمامغناطیسی، تغییر آنتروپی مغناطیسی همدما، آلایش منیزیم در ترکیب gd5si2ge2.

سنتز نانوذرات اکسیدآلومینیم به روش سل-ژل و بررسی ساختار و خواص اپتیکی آن
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد 1388
  زبیده مومنی لاریمی   محمدرضا علی نژاد

در این پروژه، نانوذرات اکسیدآلومینیم به روش سل- ژل کمپلکس- پلیمری تهیه شد و ساختار و خواص اپتیکی آنها مورد مطالعه قرار گرفت. اثر دمای تفجوشی مختلف (oc350، oc550، oc750 ، oc1000، oc1200) بر روی ساختار و اپتیکی نانوذرات مورد بررسی قرار گرفته است. طرح پراش پرتو x، فاز آمورف را برای نمونه تفجوشی شده در دمای oc350 و oc550؛ فاز مکعبی γ- اکسیدآلومینیم را برای نمونه تفجوشی شده oc750 و oc1000 و فاز ششگوشی α- اکسیدآلومینیم را برای نمونه تفجوشی شده در دمای oc1200 نشان می دهد. تصاویر tem نشان می دهد که شکل نانوذرات شبه کروی و اندازه آنها در دماهای تفجوشی oc750 و oc1000 در گستره 5-15 نانومتر و در دمای تفجوشی oc1200، در گستره 150-100 نانومترند. با افزایش دمای تفجوشی، اندازه دانه ها بزرگتر و گاف اپتیکی بدلیل محدودیت های کوانتومی کاهش می یابد. ثابت دی الکتریک، با افزایش دمای تفجوشی بدلیل افزایش چگالی افزایش می یابد.