نام پژوهشگر: رباب پسندیده

حسابان دیفرانسیلی بر روی حلقه ها
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تحصیلات تکمیلی علوم پایه زنجان - دانشکده ریاضی 1392
  رباب پسندیده   سعاد ورسایی

هدف این پایان نامه تعمیم مناسب مفهوم دیفرانسیل روی حلقه ها است. ایده اصلی این پایان نامه را می توان به این صورت خلاصه کرد؛ حد نگاشت خارج قسمت تفاضلی از خود نگاشت جدا نیست؛ به عبارت دیگر، حد یک نگاشت خارج قسمت تفاضلی به تنهایی ممکن است خیلی مفید نباشد. اما اگر آن را به عنوان توسیعی از نگاشت خارج قسمت تفاضلی در نظر بگیرید، در آن صورت اهمیت پیدا می کند. توجه کنید که $f:mathbb{r}^nsupseteq uarrow mathbb{r}^m$ از کلاس $c^1$ (در حالت معمولی) است اگر و تنها اگر نگاشت خارج قسمت تفاضلی [(x,v,t)mapsto frac{f(x+tv)-f(x)}{t}] یک توسیع پیوسته روی یک همسایگی از $u imes mathbb{r}^n imes mathbb{r}$ داشته باشد که این همسایگی شامل $t=0$ است؛ به عبارت دقیق تر $(ast)$ نگاشت پیوسته ای مانند egin{eqnarray}label{(*)} f^{[1]}:u^{[1]}:={(x,v,t) : x+tvin u}arrow mathbb{r}^m end{eqnarray} وجود داشته باشد به طوری که برای هر $(x,v,t)$ از $u^{[1]}$، [f(x+tv)-f(x)=tf^{[1]}(x,v,t).] در حقیقت اگر $(ast)$ برقرار باشد، آنگاه دیفرانسیل $f$ در $x$ با $df(x)=f(x,v,0)$ داده می شود و برعکس، اگر $f$ از کلاس $c^0$ باشد، آنگاه $f^{[1]}$ که به صورت egin{eqnarray} f^{[1]}:u^{[1]}arrow mathbb{r}^m quad ; quad f^{[1]}(x,v,t):= egin{cases} frac{(f(x+tv)-f(x))}{t},& t eq 0 ext{اگر}df(x)v,& t= 0 ext{اگر} end{cases} end{eqnarray} تعریف می شود، تابعی پیوسته است؛ و این موضوع از قضیه اساسی حسابان به دست می آید که به طور موضعی یک نمایش انتگرالی به صورت egin{eqnarray} f^{[1]}(x,v,t)=int^1_0df(x+stv)ds end{eqnarray} به دست می دهد. بحث مشابهی را می توان برای رده بندی نگاشت های $c^1$ به مفهوم میشل-باستیانی به کار برد. با در نظر گرفتن این مباحث و جای گزینی $mathbb{r}^n$ و $mathbb{r}^m$ با فضاهای برداری توپولوژیکی، وجود نگاشت پیوسته $f^{[1]}$ باشرایط گفته شده در $(ast)$ را به عنوان تعریف کلاس $c^1$ از نگاشت های به طور پیوسته مشتق پذیر در نظر می گیریم. این کار چندین مزیت دارد: نخست این که این تعریف، تعرف منطقی است حتی زمانی که با فضاهای برداری توپولوژیکی عام سروکار داریم که لزوماً محدب نیستند. این در حالی است که در این فضاها تعریف کلاسیک $c^1$ بی معناست. چون در فضاهایی که موضعاً محدب نیستند قضیه اساسی حسابان وجود ندارد، ما بسیاری از نتایج مربوطه را به طریقی در تعریف نگاشت های $c^1$ گنجانده ایم. ثانیاً و مهم تر این که ساختار میدان پایه هیچ نقش خاصی در شرایط $(ast)$ ندارد. کافی است بدانیم نگاشت های پیوسته چیستند. بنابراین می توانیم میدان پایه را باحلقه توپولوژیکی که مجموعه اعضای وارون پذیر آن چگال است، جای گزین کنیم و فضاهای موضعاً محدب را با مدول های توپولوژیکی روی چنین حلقه هایی جای گزین کنیم. برای پیش برد این هدف لازم است رده کلاس های $c^0$ را از نگاشت های پیوسته به زیرمجموعه ای از نگاشت های پیوسته محدود کنیم.در واقع با این تعمیم به زبان مشترک برای بیان صورتهای مختلف مشتق از جمله دیفرانسیل پذیری اکید و . . . می رسیم. با این تعمیم بسیاری از قوانین مشتق همچنان برقرار است. لازم به ذکر است که برای برقراری قانون ضرب و قانون خارج قسمتی فرض شده است، حلقه جابه جایی است.