نام پژوهشگر: حمید زیلوئی

سنتز جاذب نانوکامپوزیت پلیمری با استفاده از نانورس و کربن فعال در فوم پلی یورتان به منظور حذف آلاینده های نفتی از آب و پساب
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده مهندسی شیمی 1393
  امیر احمد نیک خواه   احمد اسدی نژاد

گسترش روز افزون فعالیت های صنعتی از یک سو و عدم رعایت الزامات زیست محیطی از سوی دیگرسبب شده است تا در دهه های اخیر مقادیر قابل ملاحظه ای از آلاینده های هیدروکربنی به وسیله عواملی نظیر دفع و تخلیه نامناسب فاضلاب هاو پسماندهای مراکز صنعتی، پخش آلاینده ها توسط نیروگاه ها، تصادف تانکرها و نفت کش ها و موارد دیگر، وارد محیط زیست، مخصوصاً محیط های آبی شوند. حضور این آلاینده ها سبب تخریب محیط زیست و بروز بسیاری از بیماری ها می گردد، لذا حذف این نوع از آلاینده ها اهمیت زیادی دارد. روش های حذف آلاینده های نفتی را می توان به سه دسته، روش های شیمیایی، روش های بیولوژیکی و روش های فیزیکی دسته بندی کرد. از میان این روش ها، روش های فیزیکی در صنایع کاربردی تر هستند. روش های فیزیکی حذف آلاینده های نفتی به روش های غشایی، جداکننده های ثقلی، تجهیزات شناور سازی گاز و جذب با انواع جاذب ها تقسیم می شوند. در میان روش های فیزیکی جذب به علت راندمان مناسب ببیشتر مورد توجه می باشد. برای حذف آلاینده های نفتی، جاذب های متفاوتی تاکنون بررسی شده که این جاذب ها به سه دسته کلی، جاذب های آلی سنتزی، جاذب های معدنی و جاذب های آلی طبیعی تقسیم می شوند. جاذب های آلی سنتزی به علت ساختار متخلخل دارای ظرفیت بالای جذب هستند ولی راندمان نامناسبی دارند و لذا نیاز به اصلاحات ساختاری و سطحی دارند. پلی یورتان یکی از جاذب های آلی سنتزی است که یک کوپلیمر با ساختار دوگانه سخت و نرم می باشد. قسمت سخت این پلیمر را ساختار یورتانی تشکیل می دهد و قسمت نرم مربوط به ساختار پلی اتر و یا پلی استر می باشد. در این پروژه ازدو نوع فوم پلی یورتان، سلول باز و سلول نیمه بسته برای حذف نفت خام از آب استفاده شد و جهت اصلاح ساختار آن ها برای افزایش استحکام و میزان آب گریزی از کربن فعال و نانو رس کلوزایت a20 استفاده شد. روش سنتز فوم های پلی یورتان اصلاح ساختاری شده با کربن فعال (جاذب های کامپوزیت) و نانورس کلوزایتa20 (جاذب های نانوکامپوزیت)به صورت دو ماده ای بود که ابتدا کربن فعال و نانورس کاملاً در پلی ال پخش می شوند و سپس عامل پخت پلی یورتان به آن اضافه می شود. نتایج آزمایشات نشان می دهد درصد وزنی بهینه کربن فعال در فوم پلی یورتان سلول نیمه بسته %5 و در فوم پلی یورتان سلول باز %2 است که به ترتیب موجب افزایش درصد جذب تا %21 و%17 گردیده است. حضور کربن فعال در ساختار فوم ها باعث افزایش شدید آب گریزی جاذب های کامپوزیت شده است و راندمان بازیافت نفت را در جاذب های کامپوزیت سلول باز و سلول نیمه بسته در درصد وزنی بهینه کربن فعال به ترتیب تا %28 و%73 در غلظت اولیه g/l20 از نفت خام افزایش داده است. از نانورس در فوم سلول باز استفاده شد که درصدوزنی بهینه نانورس در فوم پلی یورتان %3 بود که موجب افزایش درصد جذب تا %8 و افزایش راندمان بازیافت نفت تا %56 گردید. در این پژوهش از روش احیاء شیمیایی با حلال های نفتی، تولوئن و پترولیوم اتر استفاده شد که موجب افزایش راندمان بازیافت نفت و درصد جذب جاذب های فوم خالص سلول باز و سلول نیمه بسته و جاذب های کامپوزیت گردید. احیای شیمیایی جاذب های نانوکامپوزیت موجب افزایش درصد جذب در غلظت های پایین تا متوسط و کاهش درصد جذب در غلظت های اولیه بالا و موجب کاهش راندمان بازیافت نفت گردید. با مقایسه نتایج آزمون های جذب با مدل های هم دمای جذب لانگمویر، فروندلیچ و ردلیچ-پترسون، تطابق خوب با مدل ردلیچ-پترسون و لانگمویر مشاهده شد. برای بررسی مشخصات جاذب ها از تست طیف سنجی تبدیل فوریه مادون قرمز (ft-ir) برای بررسی تولید پلی یورتان و از تست پراش پرتو ایکس (xrd) برای بررسی تولید جاذب نانو کامپوزیت و از میکروسکوپ نوری برای بررسی ساختار فومی جاذب ها و همچنین میزان پراکندگی کربن فعال استفاده شد.

پیش فرآوری ترکیبات لیگنوسلولزی جهت بهبود تولید اتانول و بیوگاز و آنالیز فنی- اقتصادی
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده مهندسی شیمی 1393
  مرضیه شفیعی   حمید زیلوئی

امروزه نسل دوم سوختهای زیستی از مواد لیگنوسلولزی به عنوان جایگزین مناسبی برای سوختهای فسیلی به شمار می رود. برای تولید این سوختها با راندمان بالا و در مقیاس صنعتی، به یک مرحله پیش فرآوری نیاز است. به علاوه استفاده از پیش فرآوری هایی که خود از نظر زیست محیطی آثار منفی نداشته باشند یک ویژگی تعیین کننده است. در بخش اول این پژوهش روش های نوین پیش فرآوری ترکیبات لیگنوسلولزی با حلال اِن-متیل-مورفولین-اِن-اکسید (nmmo) و مایعات یونی 1-بوتیل-3-متیل-ایمیدازولیوم استات ([bmim][oac]) و 1-اتیل-3-متیل-ایمیدازولیوم استات ([emim][oac]) برای تولید اتانول و بیوگاز بررسی شد. این مواد حلال های بسیار قوی برای سلولز بوده و پسماند های سمی تولید نمی کنند. مزیت دیگر این مواد غیر سمی بودن و قابلیت بازیابی و استفاده مجدد از آنهاست. پیش فرآوری توسط حلال ها در دمای 120 درجه سانتیگراد و به مدت 1تا 15 ساعت انجام شد. سپس بر روی نمونه های چوب هیدرولیز آنزیمی انجام شده و بعد از آن از بخش مایع آن اتانول تولید شد. همچنین میزان تولید بیوگاز از نمونه های پیش فرآوری شده با nmmo بررسی و با بیوگاز حاصل از نمونه های پیش فرآوری نشده مقایسه شد. پیش فرآوری راندمان اتانول از چیپس و پودر چوب کاج را به ترتیب از 7/1% و 2/7% تا حداکثر 2/51 و 1/86% راندمان تئوری افزایش داد. این پیش فرآوری راندمان بیوگاز از چیپس و پودر چوب کاج را به ترتیب 8/6 و 4/3 برابر افزایش داد. حلال nmmo و مایعات یونی [bmim][oac] و [emim][oac] راندمان تولید اتانول از پودر چوب صنوبر را از 7/9% به ترتیب تا 4/69%، 0/81% و 5/81% افزایش دادند. راندمان تولید اتانول از چیپس چوب صنوبر پس از پیش فرآوری با این سه حلال از 7/2% به ترتیب تا 1/36%، 8/51% و 8/66% افزایش پیدا کرد. برای درک بهتر فرایند پیش فرآوری ، آنالیز های ساختاری از جمله طیف سنجی مادون قرمز با تبدیل فوریه، پراش اشعه ایکس، عکس برداری با میکروسکوپ الکترونی، و اندازه گیری جذب آب و آنزیم روی سطح انجام شد. آنالیز طیف سنجی مادون قرمز نشان داد که پیش فرآوری با nmmo باعث افزایش نسبت سلولز به لیگنین در سطح چوب شده است. همچنین کاهش بلورینگی و افزایش تخلخل نیز در چوب مشاهده شد که هر کدام می توانند دلایل بهبود راندمان اتانول و بیوگاز در اثر پیش فرآوری با nmmo باشند. در بخش بعدی این پژوهش آنالیز اقتصادی 10 فرایند تولید اتانول و بیوگاز از مواد اولیه کاه گندم، کاه برنج، چوب کاج و کاغذ باطله که با روش های انفجار با بخار یا nmmo پیش فرآوری شده اند بررسی شد. بدین منظور فرایندها توسط نرم افزار aspen plus شبیه سازی و سپس توسط نرم افزار آنالیز اقتصادی aspen pea مورد بررسی اقتصادی قرار گرفتند. در هر مورد قیمت تمام شده سوختهای زیستی با قیمت محصول موجود در بازار با احتساب هزینه های جانبی مقایسه شد. بررسی ها نشان داد که تولید سوختهای زیستی در کشور سوئد به دلیل وضع مالیاتهای انرژی وتولید دی اکسید کربن، مقرون به صرفه است تا جاییکه حدود 57% از قیمت بنزین موجود در بازار را مالیات تشکیل می دهد. قیمت تمام شده سوختهای زیستی موجود در بازار سوئد حدود 10% کمتر از بنزین است و قیمت تمام شده سوختهای زیستی در این مطالعه 18 الی 39% کمتر از بنزین بدست آمد. نتایج نشان داد که اگرچه استفاده از سوختهای زیستی در ایران هنوز مقرون به صرفه نیست اما با حذف کامل یارانه ها و افزایش مالیاتها (که در برنامه های دولت قرار دارند) آینده این سوختها روشن به نظر میرسد. اگرچه پیش فرآوری با nmmo راندمان تولید سوختهای زیستی را بیشتر از انفجار با بخار افزایش داده است، اما فرایندهایی که در آنها از پیش فرآوری با بخار استفاده شده بود به دلیل عدم نیاز به حلال، هزینه پیش فرآوری پایین تر و صرفه اقتصادی بیشتری داشتند.