حل مسائل برنامه ریزی خطی با استفاده از توابع رتبه بندی

پایان نامه
چکیده

اخیراً مسایل برنامه ریزی خطی فازی مورد توجه بسیاری از محققین حوزه تحقیق در عملیات و ریاضیات فازی قرار گرفته است. شهرت برنامه ریزی خطی فازی اساساً به واسطه توانایی تفسیر و مدل سازی مفاهیم نا دقیق و مبهم است. از این رو مدل برنامه ریزی خطی فازی یکی از مهم ترین و مناسب ترین مدل ها برای تفسیر و تعیین تصمیم بهینه می باشد .در حوزه تحقیق در عملیات انواع مختلفی از این مسایل پیشنهاد شده است که ما در این پایان نامه سه نوع ‏، مدل برنامه ریزی خطی فازی را مورد بحث قرار می دهیم :(1 مساله برنامه ریزی خطی با اعداد فازی (fnlp) 2) مساله برنامه ریزی خطی با متغیرهای فازی (fvlp) 3) مساله برنامه ریزی خطی تماماً فازی (fflp) ، که با استفاده از توابع رتبه بندی به حل مسایل با لا می پردازیم . در سراسر پایان نامه اعداد فازی بکارگرفته شده همگی از نوع ذوزنقه ای می باشند ، در مدل سوم دو روش برای حل مساله برنامه ریزی خطی تماماً فازی پیشنهاد می شود ، در روش اول با بکارگیری از ضرب ganesan [8] و با اعمال تابع رتبه بندی خاص ، مساله برنامه ریزی خطی تماماً فازی به یک مساله برنامه ریزی خطی قطعی تبدیل می شود که از حل مساله برنامه ریزی خطی قطعی بدست آمده یک جواب بهینه برای مساله اصلی به دست می آید به طور مشابه ، می توان ضرب اعداد فازی مثلثی را تعریف کرده و به کمک آن به حل مساله برنامه ریزی خطی تماماً فازی با اعداد مثلثی پرداخت . در روش دوم همه ضرایب و متغیرهای مساله ، نوع یکسانی از اعداد فازی ذوزنقه ای می باشند که برای حل این مسایل ابتدا از نگاشت تبدیل اعداد ذوزنقه ای به مثلثی استفاده کرده و مساله با اعداد ذوزنقه ای را به مساله با اعداد مثلثی تبدیل می کنیم ، سپس با استفاده ازمفهوم نزدیکترین تقریب عدد فازی مثلثی ، مساله اصلی به دو مساله کمکی (max,min) تبدیل می شود که با حل این دو مساله یک بردار جواب شامل اعداد مثلثی متقارن به دست می آید. جواب مساله کمکی بیشینه سازی ، مرکز وجواب مسئله کمکی کمینه سازی کناره های جواب محسوب می شود. در نهایت با استفاده از نگاشت تبدیل مثلثی به ذوزنقه ای به جواب ذوزنقه ای برای مساله اصلی دست می یابیم.

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

حل مسائل برنامه ریزی خطی کاملاً فازی صفر-یک با استفاده از توابع رتبه بندی

جهانشاهلو یک روش برای حل مسائل برنامه ریزی خطی صفر و یک ارائه کرده است. در این مقاله، مسائل برنامه ریزی خطی کاملاً فازی صفر و یک، فرمول بندی شده و با استفاده از تابع رتبه بندی، روشی برای حل این مسائل معرفی شده است و هم زمان روش انشعاب و کران همراه با یک مثال عددی برای تشریح روش پیشنهادی ارائه شده است.

متن کامل

آشنایی با روش فیلتر برای حل مسائل برنامه ریزی غیر خطی

یکی از روش ھای حل مسائل برنامه ریزی غیر خطی که سال ھا مورد استفاده قرار گرفته است روش جریمه می باشد. در این مقاله می خواھیم با معرفی مفھوم جدید فیلتر، الگوریتمی برای حل مسائل برنامه ریزی غیر خطی مقید بیان کنیم، که در ان از تابع جریمه استفاده نشود. اگر الگوریتم از فیلتر به جای تابع جریمه استفاده کند، برخی از مشکلات روش جریمه را حل می کند و ھمچنین ھمگرایی سرتاسری را نتیجه می دھد.که در طی مقاله اب...

متن کامل

ارایه رویکردی جدید برای حل مسایل برنامه ریزی خطی تمام فازی با استفاده از مفهوم رتبه بندی فازی

مسایل برنامه ریزی خطی تمام فازی مسایلی هستند که تمامی پارامترها اعم از ضرایب متغیرها در توابع هدف، ضرایب متغیرها در محدودیت ها و اعداد سمت راست محدودیت ها و همچنین متغیرهای تصمیم در آنها فازی می باشند. در طی چند سال اخیر چندین روش برای حل این مدل ها و تعیین جواب بهینه آنها ارایه شده است که هر یک مزایا و معایبی را به همراه دارند. در این پژوهش با نقد روش های پیشین، روشی جدید به منظور حل این قبیل ...

متن کامل

یک رویکرد جدید به حل برنامه ریزی خطی تماماً فازی با اعداد ذوزنقه ای با استفاده از توابع تبدیل

در این مقاله ما یک مدل شبکه عصبی برای تشخیص واحدهای تصمیم­گیرنده کارا در تحلیل پوششی داده­ها معرفی می­کنیم. مدل شبکه عصبی پیشنهادی از یک مسئله بهینه­سازی نامقید حاصل می­شود. از دیدگاه تئوری نشان داده می­شود شبکه عصبی پیشنهادی دارای پایداری لیاپانف و همگرای سراسری می­باشد. مدل پیشنهادی تک لایه می­باشد. شبیه سازی نشان می­دهد مدل پیشنهادی قادر به تشخیص واحدهای کارا در تحلیل پوششی داده­ها می­باشد.

متن کامل

برنامه ریزی خطی نیمه نامتناهی: الگوریتم های حل و کاربردها

مسائل برنامه ریزی خطی نیمه نامتناهی گرچه دارای خصوصیاتی شبیه مسائل متناهی هستند اما در مواردی و خصوصا در شیوه های حل با آنها تفاوت دارند. در این نوشتار نمونه هایی از برنامه ریزی خطی نیمه نامتناهی و رده های مختلف آن را معرفی و تشریح می کنیم. سپس شکاف دوگانی را برای آنها تعریف کرده بر مبنای آن به ارائه الگوریتم های حل این گونه مسائل در حالت های پیوسته و شمارا می پردازیم. همچنین روش همگرایی در خص...

متن کامل

آشنایی با روش فیلتر برای حل مسائل برنامه ریزی غیر خطی

یکی از روش ھای حل مسائل برنامه ریزی غیر خطی که سال ھا مورد استفاده قرار گرفته است روش جریمه می باشد. در این مقاله می خواھیم با معرفی مفھوم جدید فیلتر، الگوریتمی برای حل مسائل برنامه ریزی غیر خطی مقید بیان کنیم، که در ان از تابع جریمه استفاده نشود. اگر الگوریتم از فیلتر به جای تابع جریمه استفاده کند، برخی از مشکلات روش جریمه را حل می کند و ھمچنین ھمگرایی سرتاسری را نتیجه می دھد.که در طی مقاله اب...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران

کلمات کلیدی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023