نام پژوهشگر: فرامرز طلعتی

روش لتیس بولتزمن برای مدلسازی و شبیه سازی پدیده الکترووتینگ
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز 1388
  موسی محمدپورفرد   حبیب امین فر

وقتی یک سطح مشترک بین دو ماده ناهمسان ایجاد می شود، یک انرژی خاصی که متناسب با تعداد مولکول های حاضر در سطح مشترک است بوجود می آید. این انرژی، انرژی بین سطحی یا تنش سطحی نامیده می شود. با توجه به این نکته که در پدیده های تر شدن بطور مشخص یک مایع، یک جامد و یک محیط گازی وجود دارد، پس سه نوع تنش سطحی وجود خواهد داشت: مایع- گاز، گاز- جامد و مایع- جامد. هنگامیکه قطرات با یک سطح جامد تماس داشته باشند، سطح مشترک مایع- گاز بصورت یک کلاهک کروی حفظ می شود که در انتهای آن قطره مایع با یک زاویه ای به سطح جامد متصل می گردد. این زاویه، زاویه تماس یا زاویه یانگ نامیده می شود. اگر در سطحی که قطره بر روی آن واقع شده است، یک الکترود جاسازی شود، با اعمال پتانسیل الکتریکی (درست در نزدیکی سطح جامد) لایه الکتریکی مضاعف در داخل قطره تشکیل می شود، که منجر به کاهش انرژی سطح مشترک مایع- جامد می گردد. از معادله یانگ این کاهش در انرژی سطح مشترک سبب کاهش در زاویه تماس تعادلی بین مایع و جامد می شود و سبب می شود که قطره بیشتر سطح را تر کند. امروزه این پدیده به عنوان پدیده الکترووتینگ شناخته می شود که در کاربردهای پیشرفته ای در زمینه سیستم های میکرو و نانو وارد شده است. برای نمونه می توان به استفاده از آن برای انتقـال، اختلاط و توزیع میکــروسیال ها، دستـگاههای آزمایشـگاهـی مـورد استفاده برای انجام تست بر روی نمونه های بیولوژیکی و میکروپمپ ها اشاره کرد.در ادبیات فن، بررسی های عددی که در آنها عملکردهای پدیده الکترووتینگ بطور جامع مورد مطالعه قرار گرفته باشند، اندک است و در این میان کارهایی که در آنها این پدیده به شکل سه بعدی آن مورد بررسی قرار گرفته باشد، بسیار کمتر. نکته ی که باید به آن اشاره کرد اینست که در تمامی بررسی های عددی موجود هم؛ اولا مدلسازی های انجام شده قادر به شبیه سازی تمامی عملکردهای مطرح در پدیده الکترووتینگ (یعنی پخش، حرکت، تقسیم و ترکیب) نمی باشند. ثانیا روش های مورد استفاده برای شبیه سازی دارای ماهیت ماکروسکوپیک می باشند (روش های چون روش تنظیم سطح ، روش شبه استاتیک و یا حجم سیال.)، لذا قادر به اعمال سهم برهمکنش ها در سطح مولکولی نمی باشند. ثالثا اکثر کارهای موجود به شکل دو بعدی انجام شده است. هدف اصلی از انجام این رساله توسعه روش لتیس بولتزمن به منظور مطالعه سه بعدی عملکردهای پدیده الکترووتینگ بود. در این راستا ابتدا با استفاده از بسط چاپمن- انسکوگ معادلات پیوستگی و ناویر- استوکس از معادله لتیس بولتزمن برای روش مدل انرژی آزاد به شکل سه بعدی با شبکه های مکعبی و حالت اختلاف محدود آن استخراج شدند و نشان داده شده است که عبارت خطای ناشی از این استخراج تابعی از مربع عدد ماخ می باشد. با توجه به اینکه در سیستم های میکروسیال عدد ماخ کاملا کوچک است، قابل پیش بینی است که این روش برای مطالعه این سیستم ها روش مناسبی باشد. با توجه به اینکه روش مورد استفاده، یک روش انرژی محور است (یعنی انرژی آزاد محور) سهم تمامی عناصر موثر در مسئله به شکل انرژی آزاد مدلسازی و تاثیر آن بر روی انرژی آزاد کل سیستم محاسبه شده است. با استفاده از روش حساب تغییرات و کمینه سازی معادله بدست امده برای انرژی آزاد کل سیستم، روابط جدیدی برای تنش های سطحی موجود در سیستم در حضور میدان بیان و با استفاده از معادله یونگ این تغییرات در تنش های سطحی به زاویه تماس ارتباط داده شد. قبل از انجام شبیه سازی ها، با توجه به اینکه در مدل ارائه شده فرض بر خطی بودن تغییرات پتانسیل الکتریکی در داخل قطره با اندازه میکرو شده است، در ابتدا به منظور یافتن دامنه ای که درآن این فرض صادق باشد اقدام به حل عددی معادله پواسون- بولتزمن (حل این معادله منجر به مشخص شدن توزیع پتانسیل الکتریکی در دامنه مورد نظر می شود.) بصورت دو بعدی در داخل قطرات با اندازه های نانو و میکرو (صرفنظر از امکان وجود این قطرات با اندازه های مورد بررسی) پرداخته شد. با توجه به نتایج بدست آمده مشخص گردید که برای قطرات در اندازه میکرو توزیع پتانسیل الکتریکی در داخل قطرات همواره به شکل خطی می باشد. با استناد بر نتایج این بررسی از حل تحلیلی موجود برای معادله پواسون- بولتزمن یک بعدی، جهت تعیین پتانسیل الکتریکی در داخل قطره و استفاده از مقدار آن در معادلات ارائه شده (یعنی معادلات مورد نیاز برای محاسبه تنش های سطحی) بهره گرفته شد.به منظور انجام شبیه سازی ها، برنامه کامپیوتری با استفاده از زبان برنامه نویسی c++ تحت سیستم عامل لینوکس (linux opensuse) با در نظرگرفتن معادلات روش لتیس بولتزمن مدل انرژی آزاد و شرایط مرزی لازم، نوشته شده است. به کمک این برنامه اقدام به شبیه سازی عملکردهای مطرح در پدیده الکترووتینگ (یعنی پخش، حرکت، تقسیم و ترکیب) شد که در هر قسمت نتایج بدست آمده با نتایج تحلیلی و تجربی موجود مقایسه شده است. در آخرین مرحله یکی از جنبه های تازه پدیده الکترووتینگ ارائه و بررسی شده است یعنی تاثیر میدان الکتریکی بر روی تبخیرهای احتمالی در سیستم. با در نظر گرفتن این تاثیر، ترکیب قطرات با استفاده از مکانیزم تبخیر در حضور میدان الکتریکی پیشنهاد شده است. مهمترین نوآوری انجام شده، مبنا قرار گرفتن روابط ترمودینامیکی بجای استفاده از روابط جریان و همچنین تغییر متغیرها از حالت هندسی به متغیرهایی چون چگالی و پتانسیل الکتریکی برای شبیه سازی عملکردهای اشاره شده می باشد. با توجه به نتایج بدست آمده و تطابق خیلی خوب نتایج با نتایج موجود در ادبیات فن، می توان نتیجه گرفت که روش لتیس بولتزمن می تواند یک روش قدرتمند برای مطالعه سه بعدی پدیده الکترووتینگ باشد.

تحلیل تجربی و شبیه سازی fem خطای عملکردی ماشین اندازه گیری مختصات سه بعدی (cmm) در اثر تغییرات دما
پایان نامه وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده مهندسی مکانیک 1391
  محمد علی پاک سرشت   مهران محبوب خواه مهران محبوب خواه مهران محبوب خواه

اندازه گیری صحیح و دقیق اجسام، به خصوص در صنعت، از اهمیت ویژه ای برخوردار است. ماشین اندازه گیری cmm از جمله ماشین های اندازه گیری است که به طور متداول در صنعت مورد استفاده قرار می گیرد. به دلیل مکانیزم ساده اما دقیق این دستگاه، موارد استفاده این ماشین، اندازه-گیری اجسام کوچک ( با ابعاد میلی متری) تا اجسام بزرگ ( با ابعاد چندین متری) را شامل می شود. تغییرات دمای محیط پیرامون ماشین cmm موجب تغییرات دما در اجزای این ماشین می گردد. این تغییرات دما در اجزا، باعث تغییر شکل جزئی اجزای دستگاه می شود. این تغییر شکل در اجزای ماشین موجب خطا در اندازه گیری های انجام شده توسط ماشین می گردد. این خطا به خطای دمایی شناخته می شود. آگاهی از میزان این خطا در دماهای مختلف به شناسایی دقت اندازه گیری در این دماها، و کالیبراسیون صحیح دستگاه کمک می کند. برای دستیابی به این دانش، در این پایان نامه، خطای عملکردی ماشین اندازه گیری cmm در اثر تغییرات دمای محیط مورد بررسی قرار گرفته است. در این مطالعه، ابتدا مدلی سه بعدی از ماشین cmm در نرم افزار ansys طراحی شده است. سپس شرایط مرزی با توجه به شرایط معمول محیط عملکردی دستگاه تعیین شده است. بر این اساس، محدوده تغییرات دمای محیط، بین 17 تا 32 درجه سانتی گراد در نظر گرفته شده که محدوده دمایی می باشد که به طور معمول در محیط هایی که دستگاه cmm به کار می رود، مشاهده می شود. تغییر شکل اجزای دستگاه در هر یک از دماهای تعیین شده اندازه گیری شد و نتایج این شبیه سازی ها با نتایج تحلیل تجربی که بر روی مدل مشابه صورت گرفته بود، مورد مقایسه قرار گرفت. نتایج شبیه سازی های عددی نشان می دهد که بیشترین خطای دستگاه در دمای 32 اتفاق می افتد که این نتیجه با نتایج حاصل از تحلیل ریاضی مطابقت دارد. این نتایج، با نتایج حاصل از اندازه-گیری های تجربی مقایسه شده و در نمودارها به تصویر کشیده شده است.