1D Segmentation Network for 3D Seam Weld Grinding
نویسندگان
چکیده
منابع مشابه
A hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کاملA hierarchical Convolutional Neural Network for Segmentation of Stroke Lesion in 3D Brain MRI
Introduction: Brain tumors such as glioma are among the most aggressive lesions, which result in a very short life expectancy in patients. Image segmentation is highly essential in medical image analysis with applications, particularly in clinical practices to treat brain tumors. Accurate segmentation of magnetic resonance data is crucial for diagnostic purposes, planning surgical treatments, a...
متن کامل3D mesh segmentation via multi-branch 1D convolutional neural networks
There is an increasing interest in applying deep learning to 3D mesh segmentation. We observe that 1) existing feature-based techniques are often slow or sensitive to feature resizing, 2) there are minimal comparative studies and 3) techniques often suffer from reproducibility issue. This study contributes in two ways. First, we propose a novel convolutional neural network (CNN) for mesh segmen...
متن کاملNeural Network Approach for Herbal Medicine Market Segmentation
Market segmentation is the start point of executing targeted marketing strategy. This study aims to determine fit dimensions and appropriate specifications for the segmentation of herbal medicines market in order to provide production and market departments with fit strategies by identifying the profile of the market customers and recognizing their differences in the identified indices. This is...
متن کاملNeural Network Boundary Detection for 3D Vessel Segmentation
Conventionally, hand-crafted features are used to train machine learning algorithms, however choosing useful features is not a trivial task as they are very much data-dependent. Given raw image intensities as inputs, supervised neural networks (NNs) essentially learn useful features by adjusting the weights of its nodes using the back-propagation algorithm. In this paper we investigate the perf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2021
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/1924/1/012002