3MNet: Multi-task, multi-level and multi-channel feature aggregation network for salient object detection

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adaptive Multi-Level Region Merging for Salient Object Detection

Salient object detection is a long-standing problem in computer vision and plays a critical role in understanding the mechanism of human visual attention. In applications that require object-level prior (e.g. image retargeting), it is desirable that saliency detection highlights holistic objects. Lately over-segmentation techniques such as SLIC superpixel [6], Meanshift [1], and graph-based [3]...

متن کامل

MSDNN: Multi-Scale Deep Neural Network for Salient Object Detection

Salient object detection is a fundamental problem and has been received a great deal of attentions in computer vision. Recently deep learning model became a powerful tool for image feature extraction. In this paper, we propose a multi-scale deep neural network (MSDNN) for salient object detection. The proposed model first extracts global high-level features and context information over the whol...

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Multi-task Feature Selection based Anomaly Detection

Network anomaly detection is still a vibrant research area. As the fast growth of network bandwidth and the tremendous traffic on the network, there arises an extremely challengeable question: How to efficiently and accurately detect the anomaly on multiple traffic? In multi-task learning, the traffic consisting of flows at different time periods is considered as a task. Multiple tasks at diffe...

متن کامل

Multi-Stage Multi-Task Feature Learning

Multi-task sparse feature learning aims to improve the generalization performance by exploiting the shared features among tasks. It has been successfully applied to many applications including computer vision and biomedical informatics. Most of the existing multi-task sparse feature learning algorithms are formulated as a convex sparse regularization problem, which is usually suboptimal, due to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Vision and Applications

سال: 2021

ISSN: 0932-8092,1432-1769

DOI: 10.1007/s00138-021-01172-y