4D Chern–Simons theory and affine Gaudin models

نویسندگان

چکیده

Abstract We relate two formalisms recently proposed for describing classical integrable field theories. The first (Costello and Yamazaki in Gauge Theory Integrability, III, 2019) is based on the action of four-dimensional Chern–Simons theory introduced studied by Costello, Witten Yamazaki. second Yamazaki, 2017) makes use generalised Gaudin models associated with untwisted affine Kac–Moody algebras.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bethe Subalgebras in Hecke Algebra and Gaudin Models Bethe Subalgebras in Hecke Algebra and Gaudin Models

The generating function for elements of the Bethe subalgebra of Hecke algebra is constructed as Sklyanin's transfer-matrix operator for Hecke chain. We show that in a special classical limit q → 1 the Hamiltonians of the Gaudin model can be derived from the transfer-matrix operator of Hecke chain. We consruct a non-local analogue of the Gaudin Hamiltonians for the case of Hecke algebras.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Letters in Mathematical Physics

سال: 2021

ISSN: ['0377-9017', '1573-0530']

DOI: https://doi.org/10.1007/s11005-021-01354-9