A 2-Bisection with Small Number of Monochromatic Edges of a Claw-Free Cubic Graph

نویسندگان

چکیده

Abstract A bisection of a graph G is partition its vertex set into two parts the same cardinality. k -bisection such that every component each part has at most vertices. Cui and Liu proved claw-free cubic contains 2-bisection. In this paper, we improve result showing 2-bisection with bounded number monochromatic edges, where edge an connecting vertices We also prove our bound best possible for all simple graphs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Upper minus domination in a claw-free cubic graph

We show in this paper that the upper minus domination number −(G) of a claw-free cubic graph G is at most 1 2 |V (G)|. © 2006 Published by Elsevier B.V.

متن کامل

The asymptotic number of claw-free cubic graphs

Let Hn be the number of claw-free cubic graphs on 2n labeled nodes. In an earlier paper we characterized claw-free cubic graphs and derived a recurrence relation for Hn. Here

متن کامل

Uniform Number of a Graph

We introduce the notion of uniform number of a graph. The  uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2023

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-023-02611-5