A boundary value problem for delay differential equations
نویسندگان
چکیده
منابع مشابه
On boundary value problem for fractional differential equations
In this paper, we study the existence of solutions for a fractional boundary value problem. By using critical point theory and variational methods, we give some new criteria to guarantee that the problems have at least one solution and infinitely many solutions.
متن کاملExistence of triple positive solutions for boundary value problem of nonlinear fractional differential equations
This article is devoted to the study of existence and multiplicity of positive solutions to a class of nonlinear fractional order multi-point boundary value problems of the type−Dq0+u(t) = f(t, u(t)), 1 < q ≤ 2, 0 < t < 1,u(0) = 0, u(1) =m−2∑ i=1δiu(ηi),where Dq0+ represents standard Riemann-Liouville fractional derivative, δi, ηi ∈ (0, 1) withm−2∑i=1δiηi q−1 < 1, and f : [0, 1] × [0, ∞) → [0, ...
متن کاملOn a Boundary Value Problem for Nonlinear Functional Differential Equations
The following notation is used throughout the paper: N is the set of all natural numbers. R is the set of all real numbers, R+ = [0,+∞[,[x]+ = (1/2)(|x|+ x), [x]− = (1/2)(|x|− x). C([a,b];R) is the Banach space of continuous functions u : [a,b]→ R with the norm ‖u‖C =max{|u(t)| : t ∈ [a,b]}. C̃([a,b];R) is the set of absolutely continuous functions u : [a,b]→ R. L([a,b];R) is the Banach space of...
متن کاملExistence of positive solutions for a boundary value problem of a nonlinear fractional differential equation
This paper presents conditions for the existence and multiplicity of positive solutions for a boundary value problem of a nonlinear fractional differential equation. We show that it has at least one or two positive solutions. The main tool is Krasnosel'skii fixed point theorem on cone and fixed point index theory.
متن کاملNonhomogeneous boundary value problem for first-order impulsive differential equations with delay
K e y w o r d s N o n h o m o g e n e o u s boundary value problem, Monotone iterative technique, Lower solution, Upper solution, Impulsive differential equations with delay. 1. I N T R O D U C T I O N We are concerned w i t h the fol lowing n o n h o m o g e n e o u s b o u n d a r y va lue p r o b l e m for a f i r s t -order impuls ive dif ferent ia l equa t i on w i t h delay in R, x' (t) =...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Hiroshima Mathematical Journal
سال: 1977
ISSN: 0018-2079
DOI: 10.32917/hmj/1206135966