A Carbon Price Prediction Model Based on the Secondary Decomposition Algorithm and Influencing Factors

نویسندگان

چکیده

Carbon emission reduction is now a global issue, and the prediction of carbon trading market prices an important means reducing emissions. This paper innovatively proposes second decomposition price model based on nuclear extreme learning machine optimized by Sparrow search algorithm considers structural nonstructural influencing factors in model. Firstly, empirical mode (EMD) used to decompose data variational (VMD) Intrinsic Mode Function 1 (IMF1), as part input Then, maximum correlation minimum redundancy (mRMR) preprocess another After (SSA) optimizes relevant parameters Extreme Learning Machine with Kernel (KELM), for prediction. Finally, study, this selects two typical markets China analysis. In Guangdong Hubei markets, EMD-VMD-SSA-KELM superior other models. It shows that has good robustness validity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Multiscale Ensemble Carbon Price Prediction Model Integrating Empirical Mode Decomposition, Genetic Algorithm and Artificial Neural Network

Due to the movement and complexity of the carbon market, traditional monoscale forecasting approaches often fail to capture its nonstationary and nonlinear properties and accurately describe its moving tendencies. In this study, a multiscale ensemble forecasting model integrating empirical mode decomposition (EMD), genetic algorithm (GA) and artificial neural network (ANN) is proposed to foreca...

متن کامل

A Carbon Price Forecasting Model Based on Variational Mode Decomposition and Spiking Neural Networks

Abstract: Accurate forecasting of carbon price is important and fundamental for anticipating the changing trends of the energy market, and, thus, to provide a valid reference for establishing power industry policy. However, carbon price forecasting is complicated owing to the nonlinear and non-stationary characteristics of carbon prices. In this paper, a combined forecasting model based on vari...

متن کامل

mortality forecasting based on lee-carter model

over the past decades a number of approaches have been applied for forecasting mortality. in 1992, a new method for long-run forecast of the level and age pattern of mortality was published by lee and carter. this method was welcomed by many authors so it was extended through a wider class of generalized, parametric and nonlinear model. this model represents one of the most influential recent d...

15 صفحه اول

Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)

Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...

متن کامل

Crude Oil Price Prediction Based On Multi-scale Decomposition

A synergetic model (DWT-LSSVM) is presented in this paper. First of all, the raw data is decomposed into approximate coefficients and the detail coefficients at different scales by discrete wavelet transforms (DWT). These coefficients obtained by previous phase are then used for prediction independently using least squares support vector machines (LSSVM). Finally, these predicted coefficients a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energies

سال: 2021

ISSN: ['1996-1073']

DOI: https://doi.org/10.3390/en14051328