A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Closed-Form Bayesian Inferences for Multinomial Randomized Response Model

In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response model using Bayesian approach. We derived a posterior distribution for parameter of interest for multinomial randomized response model. Based on the posterior distribution, we also calculated a credible intervals and mean squared error (MSE). We finally compare th...

متن کامل

A Bayesian Mixed Logit-Probit Model for Multinomial Choice

In this paper we introduce a new flexible mixed model for multinomial discrete choice where the key individualand alternative-specific parameters of interest are allowed to follow an assumptionfree nonparametric density specification while other alternative-specific coefficients are assumed to be drawn from a multivariate normal distribution which eliminates the independence of irrelevant alter...

متن کامل

Bayesian Inference in the Multinomial Logit Model

The multinomial logit model (MNL) possesses a latent variable representation in terms of random variables following a multivariate logistic distribution. Based on multivariate finite mixture approximations of the multivariate logistic distribution, various data-augmented Metropolis-Hastings algorithms are developed for a Bayesian inference of the MNL model. Zusammenfassung: Das multinomiale log...

متن کامل

Multinomial Bayesian model of Early Visual Cortex

Using a multi-layer multinomial Bayesian network, we study the interplay between Bayesian inference and natural image learning in relation to receptive field properties of early visual cortex. Keywords—Bayesian inference, natural image learning

متن کامل

Bayesian Test of Significance for Conditional Independence: The Multinomial Model

Conditional independence tests have received special attention lately in machine learning and computational intelligence related literature as an important indicator of the relationship among the variables used by their models. In the field of probabilistic graphical models, which includes Bayesian network models, conditional independence tests are especially important for the task of learning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Communications for Statistical Applications and Methods

سال: 2007

ISSN: 2287-7843

DOI: 10.5351/ckss.2007.14.1.121